2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)最新文献

筛选
英文 中文
A 4 mm toroidal microtransformer built with wire bonding and MCM technologies 一个4毫米环形微变压器建立与线键合和MCM技术
2019 34th Symposium on Microelectronics Technology and Devices (SBMicro) Pub Date : 2019-08-01 DOI: 10.1109/SBMicro.2019.8919297
F. Nascimento, A. Telles, M. M. Rocha, R. C. Teixeira
{"title":"A 4 mm toroidal microtransformer built with wire bonding and MCM technologies","authors":"F. Nascimento, A. Telles, M. M. Rocha, R. C. Teixeira","doi":"10.1109/SBMicro.2019.8919297","DOIUrl":"https://doi.org/10.1109/SBMicro.2019.8919297","url":null,"abstract":"Manufacturing of small-scale magnetic devices is a subject that is not yet fully consolidated. Then the development process – design, fabrication and characterization – of microtransformers continues as object of studies for several applications. In this work it is presented the development and characterization steps of a four mm diameter toroidal microtransformer built using wire bonding and MultiChip Module (MCM) technologies. The device has a 19:1 turn ratio, with $31 mu mathrm{m}$ diameter aluminum wire bond around the top of a MnZn ferrite core. The wire bonds are connected to thin film gold tracks with $sim 3.5 mu mathrm{m}$ thickness at the bottom in order to complete the windings. The main parameters measured were the inductances and resistances of primary and secondary windings, and also the series-aiding and series-opposing inductances, all of them in the frequency range from 10 kHz to 2 MHz. With the results from those measurements the quality factors, mutual inductance and coupling coefficients were obtained. The inductance values of both windings are in agreement with expected ones. The device shows a good coupling coefficient and acceptable quality factors. The results show that it is feasible to build microtransformers with wire bonding onto an MCM substrate.","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114554201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
SBMicro 2019 Sponsors
2019 34th Symposium on Microelectronics Technology and Devices (SBMicro) Pub Date : 2019-08-01 DOI: 10.1109/sbmicro.2019.8919422
{"title":"SBMicro 2019 Sponsors","authors":"","doi":"10.1109/sbmicro.2019.8919422","DOIUrl":"https://doi.org/10.1109/sbmicro.2019.8919422","url":null,"abstract":"","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126440863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-layers Lateral SOI PIN Photodiodes for Solar Cells Applications 用于太阳能电池的多层横向SOI PIN光电二极管
2019 34th Symposium on Microelectronics Technology and Devices (SBMicro) Pub Date : 2019-08-01 DOI: 10.1109/SBMicro.2019.8919314
F. A. da Silva, R. Doria, M. G. C. de Andrade
{"title":"Multi-layers Lateral SOI PIN Photodiodes for Solar Cells Applications","authors":"F. A. da Silva, R. Doria, M. G. C. de Andrade","doi":"10.1109/SBMicro.2019.8919314","DOIUrl":"https://doi.org/10.1109/SBMicro.2019.8919314","url":null,"abstract":"In this paper, a lateral PIN photodiode based on a SOI wafer has been studied through numerical simulations. This device can be used as a solar cell embedded in a CMOS circuit in order to propose autonomous ultralow-power circuits (ULP). Efficiency behavior has been analyzed for different semiconductor materials and configurations in order to reach the best performance. The results indicate that a layer with a different semiconductor, with different characteristics such as forbidden band, mobility and light absorption, improves the generated power in the device, suggesting that the cell can feed circuits that need larger power.","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133375122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of the substrate effect by the capacitive coupling in SOI UTBB Transistors SOI UTBB晶体管电容耦合对衬底效应的分析
2019 34th Symposium on Microelectronics Technology and Devices (SBMicro) Pub Date : 2019-08-01 DOI: 10.1109/SBMicro.2019.8919305
F. Costa, R. Trevisoli, R. Doria
{"title":"Analysis of the substrate effect by the capacitive coupling in SOI UTBB Transistors","authors":"F. Costa, R. Trevisoli, R. Doria","doi":"10.1109/SBMicro.2019.8919305","DOIUrl":"https://doi.org/10.1109/SBMicro.2019.8919305","url":null,"abstract":"The goal of this work is to present the behavior of the substrate effect in Ultra-Thin Body and Buried Oxide (UTBB) SOI MOSFETs with the application of a selected set of back gate biases (VSUB) through DC and AC simulations. A set of different ground planes (GP) arrangements has been considered. It has been shown that the degradation due to the substrate effects increases as the substrate bias is reduced. According to the analysis, it could be observed the GP type influences the capacitive coupling of the structure as the back gate bias is varied. Additionally, it has been shown that the presence of the GP below the source and drain regions contributes significantly to the overall capacitive coupling of the device.","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115328064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Suspended Slow-Wave transmission lines for mm-wave applications 用于毫米波应用的悬挂慢波传输线
2019 34th Symposium on Microelectronics Technology and Devices (SBMicro) Pub Date : 2019-08-01 DOI: 10.1109/SBMicro.2019.8919327
L. Gomes, Serrano Ariana L. C., P. Ferrari, G. Rehder
{"title":"Suspended Slow-Wave transmission lines for mm-wave applications","authors":"L. Gomes, Serrano Ariana L. C., P. Ferrari, G. Rehder","doi":"10.1109/SBMicro.2019.8919327","DOIUrl":"https://doi.org/10.1109/SBMicro.2019.8919327","url":null,"abstract":"This paper presents and validate the concept of a suspended, slow-wave microstrip transmission line that uses air as a substrate. The lines are fabricated on a low-cost interposer technology, the metallic nanowire membrane (MnM), that allows selective growth of copper nanowires, enabling transmission lines with a wide range of Zc. Lines with widths of $35 mu mathrm{m}, 25mu mathrm{m}$ and $15mu mathrm{m}$ were designed and fabricated with 1, 2 or 4 suspended segments of $250mu mathrm{m}$ or $500mu mathrm{m}$ of length. Parametric extraction from the measured S-parameters showed $varepsilon_{eff}$ ranging from 5 to 7.5, $alpha$ smaller than 0.8 dB/mm at 70 GHz and Q as high as 55. Z c varied between $65 Omega$ and $90 Omega$.","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126576433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Development of MEMS microsensors, aiming at the application in the study of muscle fatigue in vivo 开发MEMS微传感器,旨在将其应用于体内肌肉疲劳的研究
2019 34th Symposium on Microelectronics Technology and Devices (SBMicro) Pub Date : 2019-08-01 DOI: 10.1109/SBMicro.2019.8919262
Kaique F. Sanches, Selva Jéssica S. G., D. D. Purificação, M. Bertotti, Carreño Marcelo N. P.
{"title":"Development of MEMS microsensors, aiming at the application in the study of muscle fatigue in vivo","authors":"Kaique F. Sanches, Selva Jéssica S. G., D. D. Purificação, M. Bertotti, Carreño Marcelo N. P.","doi":"10.1109/SBMicro.2019.8919262","DOIUrl":"https://doi.org/10.1109/SBMicro.2019.8919262","url":null,"abstract":"Many studies have been conducted in order to better understand the role of the pH in muscle fatigue. However, measuring in vivo pH concentration, in the muscular environment during anaerobic exercise, cannot be conducted through regular methods. Thus, in this work, we design and fabricate a siliconbased implantable microelectrode array (MEA) utilizing microelectronics and MEMS techniques. The probe consists of a microneedle with three pairs of electrodes, each containing one Ag-AgCl reference electrode and one Au-IrOx working electrode. The Au and Au/IrOx electrodes were tested in a potassium ferricyanide solution and, in order to verify the device sensitivity to pH, open circuit potential (OCP) measurements were carried out in 0.1 mol L-1 phosphate buffer solution (PBS) with different pH values. The results show a linear response to the solution pH in the studied range, proving that the probe is a promising sensor.","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114997113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of MEMS based microCVD technique for new materials thin films deposition 基于MEMS的微cvd新材料薄膜沉积技术的发展
2019 34th Symposium on Microelectronics Technology and Devices (SBMicro) Pub Date : 2019-08-01 DOI: 10.1109/SBMicro.2019.8919253
R.A.R. Oliveira, I. Pereyra, M. Carreño
{"title":"Development of MEMS based microCVD technique for new materials thin films deposition","authors":"R.A.R. Oliveira, I. Pereyra, M. Carreño","doi":"10.1109/SBMicro.2019.8919253","DOIUrl":"https://doi.org/10.1109/SBMicro.2019.8919253","url":null,"abstract":"In this work a new approach for deposition of new materials is proposed. In this approach, a CVD (Chemical Vapor Deposition) process is implemented in a micro heater fabricated by MEMS technology, which presents as main appeals (a) short heating and cooling times, (b) the possibility of grown spatially localized films, in well defined regions of a substrate, and (c) to allow the growth of different materials in a single deposition process. Due to its conception, this approach also allows to grow the materials in a device integrated way, in structures where they can be characterized or in the final devices where they are going to be used. As it will be shown, a wide range of temperatures is attainable, from room temperature to well over 1000°C. The microCVD deposition is obtained when the MEMS micro heater is placed inside a vacuum chamber with the precursor gases and the micro heater is electrically polarized to attain the desire temperature. Computer simulation in Ansys Software was performed to estimate the final temperature of the heaters and the fabricated microCVD devices were tested in CH4 atmosphere, to obtain carbon and graphene films.","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115156241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Boosting the Ionizing Radiation Tolerance in the Mosfets Matching by Using Diamond Layout Style 利用菱形布局提高mosfet匹配中的电离辐射容忍度
2019 34th Symposium on Microelectronics Technology and Devices (SBMicro) Pub Date : 2019-08-01 DOI: 10.1109/SBMicro.2019.8919344
V. V. Peruzzi, W. Cruz, Gabriel Augusto da Silva, R. C. Teixeira, Luis Eduardo Seixas Junior, S. Gimenez
{"title":"Boosting the Ionizing Radiation Tolerance in the Mosfets Matching by Using Diamond Layout Style","authors":"V. V. Peruzzi, W. Cruz, Gabriel Augusto da Silva, R. C. Teixeira, Luis Eduardo Seixas Junior, S. Gimenez","doi":"10.1109/SBMicro.2019.8919344","DOIUrl":"https://doi.org/10.1109/SBMicro.2019.8919344","url":null,"abstract":"There are a lot of initiatives to improve the devices matching (dog bone layout, common centroid layout, dummy devices, etc.). Another layout technique, not yet used by integrated circuits (ICs) companies, is the utilization of non-conventional layout styles (hexagonal, octagonal, ellipsoidal, etc.) for MOSFETs, thanks to the Longitudinal Corner Effect (LCE), Parallel Connection of MOSFETs with different channel Lengths Effect (PAMDLE) and Deactivation of Parasitic MOSFETs in Bird’s Beaks Regions (DEMPAMBBRE). In this context, this paper describes an experimental comparative study of the devices matching of Metal-Oxide-Semiconductor Field Effect Transistors (130 nm Silicon-Germanium Bulk), n-type (nMOSFETs) implemented with Diamond (hexagonal) and standard rectangular layout styles, regarding a sample of 189 transistors which were exposure to different X-rays ionizing radiations. Considering some relevant electrical parameters considered in this work, the results indicate that the Diamond layout style with $alpha$ angle equal to 90° is capable of boosting by at least 40% the device matching in relation to one observed with standard (rectangular) MOSFET counterparts in irradiation environment, considering they present the same gate areas, channel widths and bias conditions. Therefore, the Diamond layout style can be considered another hardness-by-design (HBD) layout strategy to boost the electrical performance and ionizing radiation tolerance of MOSFETs.","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124195087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Analysis of the Scattering Mechanisms in the Accumulation Layer of Junctionless Nanowire Transistors at High Temperature 无结纳米线晶体管堆积层高温散射机理分析
2019 34th Symposium on Microelectronics Technology and Devices (SBMicro) Pub Date : 2019-08-01 DOI: 10.1109/SBMicro.2019.8919428
T. A. Ribeiro, M. Pavanello
{"title":"Analysis of the Scattering Mechanisms in the Accumulation Layer of Junctionless Nanowire Transistors at High Temperature","authors":"T. A. Ribeiro, M. Pavanello","doi":"10.1109/SBMicro.2019.8919428","DOIUrl":"https://doi.org/10.1109/SBMicro.2019.8919428","url":null,"abstract":"This work studies the effects of high temperature on the scattering mechanisms of Junctionless Nanowire Transistors with several fin width from nanowire to quasi-planar devices. With the variation of the temperature it was possible to analyze the impact of the scattering mechanisms on the devices. For nanowire devices at room temperature a degradation of up to 19% was seen from the maximum mobility to the mobility at higher gate bias to around 15% at 500K, while quasi-planar devices show a degradation of around 12% for all temperatures. Further analysis shows that the impact of the surface roughness for nanowires increase the degradation of these devices, where a reduction of its degradation at higher temperature shows the phonon scattering as the main scattering mechanism.","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130340095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Realistic Simulations and Design of GaAs Solar Cells produced by Molecular Beam Epitaxy 分子束外延制备砷化镓太阳能电池的仿真与设计
2019 34th Symposium on Microelectronics Technology and Devices (SBMicro) Pub Date : 2019-08-01 DOI: 10.1109/SBMicro.2019.8919412
T. Borrely, A. Quivy
{"title":"Realistic Simulations and Design of GaAs Solar Cells produced by Molecular Beam Epitaxy","authors":"T. Borrely, A. Quivy","doi":"10.1109/SBMicro.2019.8919412","DOIUrl":"https://doi.org/10.1109/SBMicro.2019.8919412","url":null,"abstract":"Numerical simulations were used to assess the relevance of the parameters involved in producing GaAs solar cells (SCs). Optical characteristics of SCs were calculated via OpenFilters software, while device performances were calculated via SCAPS software. Junction thickness, doping level, surface-field layer composition and anti-reflective coating thickness were found to be extremely important parameters, meaning that a small variation of their values may lead to a substantial efficiency reduction. These results indicate that researchers must be very careful when comparing different new-concepts SCs, because small lapses or fluctuations in production processes may enshroud the new-concept related changes.","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123800449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信