{"title":"无结纳米线晶体管堆积层高温散射机理分析","authors":"T. A. Ribeiro, M. Pavanello","doi":"10.1109/SBMicro.2019.8919428","DOIUrl":null,"url":null,"abstract":"This work studies the effects of high temperature on the scattering mechanisms of Junctionless Nanowire Transistors with several fin width from nanowire to quasi-planar devices. With the variation of the temperature it was possible to analyze the impact of the scattering mechanisms on the devices. For nanowire devices at room temperature a degradation of up to 19% was seen from the maximum mobility to the mobility at higher gate bias to around 15% at 500K, while quasi-planar devices show a degradation of around 12% for all temperatures. Further analysis shows that the impact of the surface roughness for nanowires increase the degradation of these devices, where a reduction of its degradation at higher temperature shows the phonon scattering as the main scattering mechanism.","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of the Scattering Mechanisms in the Accumulation Layer of Junctionless Nanowire Transistors at High Temperature\",\"authors\":\"T. A. Ribeiro, M. Pavanello\",\"doi\":\"10.1109/SBMicro.2019.8919428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies the effects of high temperature on the scattering mechanisms of Junctionless Nanowire Transistors with several fin width from nanowire to quasi-planar devices. With the variation of the temperature it was possible to analyze the impact of the scattering mechanisms on the devices. For nanowire devices at room temperature a degradation of up to 19% was seen from the maximum mobility to the mobility at higher gate bias to around 15% at 500K, while quasi-planar devices show a degradation of around 12% for all temperatures. Further analysis shows that the impact of the surface roughness for nanowires increase the degradation of these devices, where a reduction of its degradation at higher temperature shows the phonon scattering as the main scattering mechanism.\",\"PeriodicalId\":403446,\"journal\":{\"name\":\"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBMicro.2019.8919428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBMicro.2019.8919428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of the Scattering Mechanisms in the Accumulation Layer of Junctionless Nanowire Transistors at High Temperature
This work studies the effects of high temperature on the scattering mechanisms of Junctionless Nanowire Transistors with several fin width from nanowire to quasi-planar devices. With the variation of the temperature it was possible to analyze the impact of the scattering mechanisms on the devices. For nanowire devices at room temperature a degradation of up to 19% was seen from the maximum mobility to the mobility at higher gate bias to around 15% at 500K, while quasi-planar devices show a degradation of around 12% for all temperatures. Further analysis shows that the impact of the surface roughness for nanowires increase the degradation of these devices, where a reduction of its degradation at higher temperature shows the phonon scattering as the main scattering mechanism.