SOI UTBB晶体管电容耦合对衬底效应的分析

F. Costa, R. Trevisoli, R. Doria
{"title":"SOI UTBB晶体管电容耦合对衬底效应的分析","authors":"F. Costa, R. Trevisoli, R. Doria","doi":"10.1109/SBMicro.2019.8919305","DOIUrl":null,"url":null,"abstract":"The goal of this work is to present the behavior of the substrate effect in Ultra-Thin Body and Buried Oxide (UTBB) SOI MOSFETs with the application of a selected set of back gate biases (VSUB) through DC and AC simulations. A set of different ground planes (GP) arrangements has been considered. It has been shown that the degradation due to the substrate effects increases as the substrate bias is reduced. According to the analysis, it could be observed the GP type influences the capacitive coupling of the structure as the back gate bias is varied. Additionally, it has been shown that the presence of the GP below the source and drain regions contributes significantly to the overall capacitive coupling of the device.","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of the substrate effect by the capacitive coupling in SOI UTBB Transistors\",\"authors\":\"F. Costa, R. Trevisoli, R. Doria\",\"doi\":\"10.1109/SBMicro.2019.8919305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this work is to present the behavior of the substrate effect in Ultra-Thin Body and Buried Oxide (UTBB) SOI MOSFETs with the application of a selected set of back gate biases (VSUB) through DC and AC simulations. A set of different ground planes (GP) arrangements has been considered. It has been shown that the degradation due to the substrate effects increases as the substrate bias is reduced. According to the analysis, it could be observed the GP type influences the capacitive coupling of the structure as the back gate bias is varied. Additionally, it has been shown that the presence of the GP below the source and drain regions contributes significantly to the overall capacitive coupling of the device.\",\"PeriodicalId\":403446,\"journal\":{\"name\":\"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBMicro.2019.8919305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBMicro.2019.8919305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作的目的是通过直流和交流模拟,在一组选定的后极偏置(VSUB)的应用下,展示超薄体和埋藏氧化物(UTBB) SOI mosfet中衬底效应的行为。考虑了一组不同的地平面(GP)布置。研究表明,随着衬底偏压的减小,由衬底效应引起的降解会增加。通过分析可以看出,随着后门偏压的变化,GP类型对结构的电容耦合有影响。此外,已经表明,源极和漏极区域下方GP的存在对器件的整体电容耦合有重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the substrate effect by the capacitive coupling in SOI UTBB Transistors
The goal of this work is to present the behavior of the substrate effect in Ultra-Thin Body and Buried Oxide (UTBB) SOI MOSFETs with the application of a selected set of back gate biases (VSUB) through DC and AC simulations. A set of different ground planes (GP) arrangements has been considered. It has been shown that the degradation due to the substrate effects increases as the substrate bias is reduced. According to the analysis, it could be observed the GP type influences the capacitive coupling of the structure as the back gate bias is varied. Additionally, it has been shown that the presence of the GP below the source and drain regions contributes significantly to the overall capacitive coupling of the device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信