{"title":"ANALISIS MODEL MATEMATIKA SEITR PADA PENYAKIT CACAR AIR","authors":"Musarifa, Hikmah, Fardinah","doi":"10.31605/jomta.v3i2.1372","DOIUrl":"https://doi.org/10.31605/jomta.v3i2.1372","url":null,"abstract":"Chickenpox is an infectious disease caused by the varicella zoster virus. This infectious disease generally occurs not only in children but also attack adults and the nature of its transmission is so capidly. The purpose of this research is to build a model and analyze the SEITR (Susceptible-Exposed-Infected-Treatment-Recovered) mathematical model. The results obtained from the SEITR model have two equilibrium points, namely disease-free and endemic. Model analysis was performed using the Routh-Horwitz criteria to identify the eigenvalues. Based on the results of the stability analysis that the disease-free equilibrium point were stable if the condition for the relationship between parameters were met. At the end of the study,on the simulation that has been carried out it is found that this disease will when is 0,58 and this disease will be epidemic when is 2,80.","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"110 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133398608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ANALISIS MODEL MATEMATIKA PENYEBARAN PENYAKIT ISPA","authors":"Nurfadilah, Hikmah, Fardinah","doi":"10.31605/jomta.v3i1.1373","DOIUrl":"https://doi.org/10.31605/jomta.v3i1.1373","url":null,"abstract":"Acute Respiratory Infection (ARI) is an infectious disease caused by bacteria and an unhealthy environment. The number of sufferers of this disease tends to increase and expand. The purpose of this study was to construct a mathematical model of the SEHAR epidemic (Suspectible-Exposed-Infected-Asthma-Recovered), analyze the stability of the equilibrium point and simulate the model. The results obtained are the SEHAR mathematical model for the spread of ARI disease which produces a disease-free equilibrium point and an endemic equilibrium point from the model. The method used is the stability analysis of the model using the Routh-Hurwitz Criteria to identify the characteristics of the eigenvalues. From the results of the stability analysis, it is found that the disease-free equilibrium point Eo and the endemic equilibrium point E1 are stable if the conditions for the relationship between parameters are met. At the end of the study, a simulation model was given using the Maple application","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125645343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analisis Model Matematika PLSQ Jumlah Perokok","authors":"St. Halija, F. Fardinah, Ahmad Ansar","doi":"10.31605/jomta.v3i2.1370","DOIUrl":"https://doi.org/10.31605/jomta.v3i2.1370","url":null,"abstract":"Smoking is a habit that is favored by some people, but smoking causes health, economic, social and environmental burdens not only for smokers but also for others. This study aims to determine the mathematical model of the number of smokers, analysis of the equilibrium point of the PLSQ mathematical model of the number of smokers and a simulation of the mathematical model of the PLSQ of the number of smokers. In this study, the researcher assumed that the current smoker had a death rate caused by smoking and that the former smoker after he recovered, would not return to smoking. The results obtained are the PLSQ mathematical model of the number of smokers which produces 1 (one) smoke-free equilibrium point and 1 (one) smoker endemic point from the model. The stability analysis of the model was carried out using the Routh-Hurwitz Criteria to identify the characteristics of the eigenvalues. From the results of the stability analysis, it was found that the smoker-free equilibrium point E0 and the smokers endemic equilibrium point E1 were stable if the condition for the relationship between parameters were met. At the end of the study, a simulation model was given using the Maple application","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123971434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pengintegralan Numerik untuk Interval Titik yang Tidak Sama menggunakan Aturan Boole","authors":"Nopriani Nopriani, A. Ansar, Darma Ekawati","doi":"10.31605/jomta.v3i1.1374","DOIUrl":"https://doi.org/10.31605/jomta.v3i1.1374","url":null,"abstract":"Secara umum pengintegralan numerik didasarkan pada interval titik yang sama namum pada kenyataannya dihadapkan pada persoalan pengintegralan numerik dengan interval titik yang tidak sama. Penelitian ini dilakukan untuk memperoleh rumus umum pengintegralan numerik untuk interval titik yang tidak sama dengan menggunakan selisih terbagi Newton sehingga diperoleh rumus umum dan error dari integrasi numerik dengan menggunakan aturan Boole. Selanjutnya disimulasikan contoh integrasi numerik dengan bantuan Program MATLAB untuk membandingkan hasil numerik dan analitik sehingga diperoleh hasil yang mendekati nilai eksak. Berdasarkan hasil simulasi numerik diketahui bahwa semakin banyak subinterval yang digunakan maka semakin menghampiri solusi eksak atau solusi sejati.","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"140 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133216838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Penerapan Metode SARIMA untuk Peramalan Jumlah Pengunjung Wisata Taman Nasional Bantimurung Bulusaraung Maros","authors":"Munira Munira Anwar, Khalilah Nurfadilah, Wahidah Alwi","doi":"10.31605/jomta.v3i1.1221","DOIUrl":"https://doi.org/10.31605/jomta.v3i1.1221","url":null,"abstract":"Penelitian ini membahas tentang peramalan jumlah pengunjung wisata Taman Nasional Bantimurung Bulusaraung Maros. Salah satu faktor yang mempengaruhi perkembangan wisata Bantimurung Bulusaraung karena dapat menyebabkan perubahan jumlah pengunjung. Dalam penelitian ini, upaya untuk meminimalisir jumlah pengunjung yang tidak tentu dilakukan dengan meramalkan jumlah pengunjung Wisata Taman Nasional Bantimurung Bulusaraung Maros. Tujuan penelitian ini yaitu untuk mengetahui model peramalan jumlah pengunjung Taman Nasional Bantimurung Bulusaraung Maros dan mengetahui hasil ramalan jumlah pengunjung Taman Nasional Bantimurung Bulusaraung Maros menggunakan metode SARIMA. Adapun hasil yang diperoleh pada penelitian ini menunjukkan bahwa jumlah pengunjung Wisata Taman Nasional Bantimurung Bulusaraung Maros mengalami kenaikan dan penurunan dalam periode satu tahun. Jumlah pengunjung tertinggi terjadi pada bulan Desember Tahun 2020 yaitu sebanyak 19061 orang dan jumlah terendah terjadi pada bulan Januari Tahun 2020 yaitu sebanyak 15067 orang. Adapun model peramalan jumlah pengunjung Taman Nasional Bantimurung Bulusaraung Maros menggunakan metode SARIMA yaitu model SARIMA (1,1,3) (2,1,1)12 ","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127759346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Model Epidemi SIR Pengguna/Pemain Mobile Games Pada Mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sulawesi Barat","authors":"Asrul Agus, R. Rahmawati, F. Fardinah","doi":"10.31605/jomta.v2i2.1185","DOIUrl":"https://doi.org/10.31605/jomta.v2i2.1185","url":null,"abstract":"Game saat ini berkembang sangat pesat, tidak hanya sebagai hiburan bahkan game kini banyak yang diperlombakan. Game semakin mudah untuk diakses oleh berbagai kalangan umur sejak munculnya mobile games pada era mobile phone seperti sekarang. Oleh karena itu, pada skripsi ini penulis menganalisis model matematika epidemi untuk pemain/pengguna mobile games. Model epidemi umumnya digunakan untuk melihat fenomena penyebaran suatu penyakit. Pada penelitian ini, penulis membangun model epidemi SIR untuk pengguna/pemain mobile games Mahasiswa FMIPA Unsulbar, kemudian titik kesetimbangan model tersebut yaitu E(192,0) dan bersifat stabil, serta bilangan reproduksi dasar sebesar 0,51 yang menunjukkan bahwa tidak akan terjadi endemik dan penyakit akan menghilang secara perlahan seiring berjalannya waktu. Untuk simulasi model, penulis menggunakan program maple","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131133770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analisis Model Predator Prey dengan Adanya Penyakit Pada Prey dan Pemanenan Pada Predator","authors":"M. Mansur","doi":"10.31605/jomta.v2i2.1186","DOIUrl":"https://doi.org/10.31605/jomta.v2i2.1186","url":null,"abstract":"Model predator-prey adalah salah satu model yang diperkenalkan dalam matematika yang menggambarkan interaksi antara dua populasi yang bersifat mangsa dan pemangsa. Namun, model predator-prey yang umum digunakan selalu diasumsikan bahwa kedua populasi dalam kondisi sehat. Tujuan penelitian ini adalah untuk mengetahui analisis model predator prey dengan adanya penyakit pada prey dan pemanenan pada predator. Hasil yang diperoleh berupa model predator prey yang menghasilkan 5 (lima) titik kesetimbangan dari model tersebut. Analisis kestabilan model dilakukan dengan menggunakan Kriteria Routh-Hurwitz untuk mengidentifikasi karakteristik nilai eigen. Dari hasil analisis kestabilan diperoleh bahwa titik kesetimbangan stabil sedangkan titik kesetimbangan tidak stabil. Pada akhir penelitian, diberikan simulasi model dengan menggunakan aplikasi Maple","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"163 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132359358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"THE Using the Geograhically Weighted Regression (GWR) Method to Estimate the Dominant Factors Affecting the Poor in Jambi Province","authors":"Susi Kartika Soleh","doi":"10.31605/jomta.v2i2.998","DOIUrl":"https://doi.org/10.31605/jomta.v2i2.998","url":null,"abstract":"Kemiskinan merupakan keadaan individu atau sekelompok orang tidak mampu memenuhi kebutuhan dasar yang dianggap sebagai kebutuhan minimal dan memiliki standar tertentu. Salah satu Provinsi yang tercatat jumlah penduduk miskin yang memiliki penghasilan di bawah standar adalah Provinsi Jambi. Tujuan dari penelitian ini adalah mengetahui faktor apa yang paling dominan yang mempengaruhi kemiskinan di Provinsi Jambi menggunakan metode Geographically weighted Regression (GWR). Variabel yang mempengaruhi kemiskinan adalah populasi penduduk yang memiliki akses air bersih ( , laju pertumbuhan penduduk( , angka harapan hidup( , rata-rata lama sekolah( , angka partisipasi sekolah( , persentase pengangguran( , jumlah penduduk tamat S1/D3 ( dan inflasi( . Data yang digunakan diperoleh dari data SUSENAS 2018. Berdasarkan hasil analisis, dapat disimpulkan bahwa variabel dominan yang mempengaruhi kmiskinan di Provinsi Jambi adalah . Kabupten/Kota dikelompokan berdasarkan variabel yang signifikan pada Kabupaten/Kota tersebut. Tebo, Bungo dipengaruhi oleh ; Merangin, Sarolangun dan Bantanghari di pengaruhi oleh ; Tanjung Jabung Barat dipengaruhi oleh ; Tanjung Jabung Timur dipengaruhi oleh ; sedangkan untuk Muaro Jambi, Sungai Penuh, Jambi dan Kerinci dipengaruhi oleh faktor lain yang tidak terdapat dalam penelitian.","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133881131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mathematical Model of Armed Criminal Group with Pre-emitive and Repressive Intervention","authors":"Wahyudin Nur, Darmawati Darmawati","doi":"10.31605/jomta.v2i2.872","DOIUrl":"https://doi.org/10.31605/jomta.v2i2.872","url":null,"abstract":"Armed Criminal group is one of the problems faced by many countries in the world. Awful behaviour of armed criminal group members can affect a large amount of people. In this paper, we construct a deterministic mathematical model that takes into account persuasive and repressive intervention. We consider crime as a social epidemic. We determine the armed criminal group free equilibrium point and the armed criminal group persistence equilibrium point together with their existence condition. The next generation matrix is used to obtain the basic reproduction number. The local stability conditions of equilibrium points are proved using linearization. We show that the armed criminal group free equilibrium point is globally asymptotically stable under certain condition. Numerical simulations are performed to support our deductive study.","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"83 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121626746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wahyudin Nur, M. Magfirah, Darmawati Darmawati, A. Ansar
{"title":"Stability Analysis of Tuberculosis SITS Model","authors":"Wahyudin Nur, M. Magfirah, Darmawati Darmawati, A. Ansar","doi":"10.31605/jomta.v2i2.874","DOIUrl":"https://doi.org/10.31605/jomta.v2i2.874","url":null,"abstract":"Tuberculosis (TB) is an infectious disease caused by mycobacterium tuberculosis. The purpose of this study is to investigate the dynamics of TB spread by using mathematical model. We develop SITS model which expressed as system of differential equations. The system has two equilibrium points, namely disease-free equilibrium point and endemic equilibrium point. The stability condition of the equilibrium points is proved. We perform several numerical simulations to support our theoretical results.","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117253588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}