{"title":"Analisis Jumlah Klaim Agregasi Berdistribusi Negative Binomial Dan Besar Klaim Berdistribusi Discreate Uniform Dengan Menggunakan Metode Konvolusi","authors":"Seftina Diyah Miasary","doi":"10.31605/jomta.v4i2.2010","DOIUrl":"https://doi.org/10.31605/jomta.v4i2.2010","url":null,"abstract":"Claims are a form of demands from insurance policy holders in order to get protection against financial losses due to risks that occur. Claims that arise every time a risk occurs are called individual claims, while the total of individual claims during an insurance period is called aggregation claims. In addition, claims are one of the important elements in optimizing the minimum expenditure of insurance companies where one of the calculations that insurance companies need to know based on claims is aggregate loss. Aggregate loss is the total loss in a period experienced by the policyholder which is borne by an insurance company. This study aims to determine the estimated total aggregate loss claims for the number of claims with a Negative Binomial distribution and the size of the claims with a Discrete Uniform distribution in the recapitulation of claim payments according to all types of guarantees and the nature of injuries in 2018-2020 PT. Jasa Raharja, Purwakarta. This study uses the convolution method with the help of Easyfit and R Studio software. The convolution method is a method of calculating the number of multiplication pairs of a probability density function. The results of this study indicate that from the recapitulation data on claim payments according to all types of insurance and nature of injury in 2018-2020 PT. Jasa Raharja, Purwakarta, the estimated total monthly aggregate loss claims for the years 2021-2023 using Jasa Raharja's insurance claim data from 2018 to 2020 based on the Negative Binomial distribution and the Discrete Uniform distribution is IDR 4,278,5545,000 and the variance value of 2.128412e-06.","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117331430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analisis Tingkat Kepentingan terhadap Faktor-Faktor yang Mempengaruhi Indeks Pembangunan Manusia di Indonesia","authors":"Retno Mayapada -, Reski Wahyu Yanti, Syandriana Syarifuddin","doi":"10.31605/jomta.v4i2.2030","DOIUrl":"https://doi.org/10.31605/jomta.v4i2.2030","url":null,"abstract":"Indeks Pembangunan Manusia (IPM) merupakan ukuran kunci untuk mengukur keberhasilan upaya peningkatan kualitas hidup penduduk. IPM dapat menentukan peringkat atau tingkat perkembangan suatu wilayah/negara. Indeks Pembangunan Manusia (IPM) mengukur kinerja pembangunan manusia berdasarkan banyak komponen dasar kualitas hidup. Indeks Pembangunan Manusia (IPM) juga merupakan indikator penting untuk mengukur keberhasilan upaya peningkatan kualitas hidup. Penelitian ini menggunakan metode regresi random forest dengan tingkat kepentingan peubah prediktor diukur menggunakan nilai Shapley Addictive Explanation (SHAP). Hasil penelitian menunjukkan bahwa dari keempat faktor-faktor yang mempengaruhi IPM, peubah pengeluaran per kapita (X1) memiliki tingkat kepentingan tertinggi dan yang terendah adalah peubah angka harapan lama sekolah (X3). Sementara rata-rata lama sekolah (X2) dan umur harapan hidup saat lahir (X4) memiliki tinkat kepentingan berturut-turut kedua dan ketiga terhadap IPM di Indonesia.","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126397741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pemodelan Matematika SEIRS pada Penyebaran Covid-19 dengan Penerapan Protokol Kesehatan (Studi Kasus di Kabupaten Bulukumba)","authors":"Muhammad Abdy, Syafruddin Side, Sopiyah","doi":"10.31605/jomta.v4i2.2035","DOIUrl":"https://doi.org/10.31605/jomta.v4i2.2035","url":null,"abstract":"Tujuan dari kajian ini adalah untuk mengkonstruksi model SEIRS pada penyebaran Covid-19 di Kabupaten Bulukumba dengan mempertimbangkan penerapan protocol kesehatan. Analisis model menggunakan matriks next generasi untuk memperoleh bilangan reproduksi dasar dan kestabilan dari titik ekuilibrium model. Hasil simulasi menunjukkan bahwa penerapan protocol kesehatan yang efektif, yaitu lebih dari 21%, akan dapat menghambat laju penularan Covid-19 di Kabupaten Bulukumba.","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115207881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cadangan Canadian Asuransi Jiwa Dwiguna dengan Penerapan Hukum Mortalitas De Moivre","authors":"D. Sari, Darma Ekawati","doi":"10.31605/jomta.v4i2.2031","DOIUrl":"https://doi.org/10.31605/jomta.v4i2.2031","url":null,"abstract":"Cadangan premi adalah sejumlah dana yang perlu dipersiapkan oleh perusahaan asuransi untuk persiapan pembayaran manfaat pertanggungan ketika terjadi klaim. Salah satu metode perhitungan cadangan premi adalah metode canadian yang merupakan perluasan dari metode cadangan prospektif. Faktor utama dalam perhitungan aktuaria adalah tingkat kematian yang dapat ditentukan dengan menggunakan hokum mortalitas De Moivre. Penelitian ini bertujuan untuk menentukan besarnya cadangan premi pada asuransi jiwa dwiguna dengan menggunakan metode canadian dan hukum mortalitas De Moivre. Perhitungan cadangan premi dimulai dengan menentukan peluang hidup seseorang pada jangka waktu n tahun hukum de moivre yang kemudian digunakan untuk mencari nilai asuransi, nilai anuitas awal, premi tahunan, premi modifikasi berdasarkan metode canadian, dan besarnya cadangan premi di akhir tahun ke-t. Penelitian ini dilakukan pada seorang wanita berusia 25 tahun yang mengikuti program asuransi jiwa dwiguna dengan masa pertanggungan 25 tahun dan jangka waktu pembayaran premi 23 tahun pada tingkat suku bunga 4% dengan uang pertanggunan sebesar Rp. 500.000.000. Hasil analisis menunjukkan bahwa besar cadangan premi yang diperoleh pada akhir masa pertanggungan dengan metode canadian dan hukum mortalitas De Moivre sama dengan nilai santunan yang diberikan, sehingga perusahaan asuransi siap untuk memberikan santunan sebesar yang dijanjikan kepada pemegang polis. Sedangkan pada awal masa pertanggung nilai cadangan canadian untuk asuransi jiwa dwiguna yang menerapkan hukum De Moivre menghasilkan nilai yang lebih kecil dibandingkan nilai cadangan canadian asuransi jiwa dwiguna tanpa hukum De Moivre.","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"139 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122910897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Teorema Titik Tetap untuk Pemetaan Bernilai Himpunan pada Subset dari Ruang b-Metrik","authors":"Syamsuddin Mas'ud","doi":"10.31605/jomta.v4i2.2019","DOIUrl":"https://doi.org/10.31605/jomta.v4i2.2019","url":null,"abstract":"Abstrak. Tulisan ini membahas tentang teorema titik tetap untuk pemetaan bernilai himpuanan dengan domain berupa subset dari suatu ruang b-metrik. Hasil yang diperoleh merupakan pengembangan dari hasil yang telah diperoleh pada literatur terdahulu. \u0000Kata kunci: b-metrik, pemetaan bernilai himpuan, teorema titik tetap. \u0000 \u0000Abstract. This paper study about fixed point theorem for set-valued maps where its domain is subset of a b-metric space. The result is improvement from the literature. \u0000Keywords: b-metric, set-valued maps, fixed point theorem.","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121850883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MODEL MATEMATIKA PADA PENYAKIT DIABETES MELITUS DENGAN FAKTOR GENETIK DAN FAKTOR SOSIAL","authors":"Karlina Kaya', Darmawati, Darma Ekawati","doi":"10.31605/jomta.v3i1.1366","DOIUrl":"https://doi.org/10.31605/jomta.v3i1.1366","url":null,"abstract":"Diabetes melitus (DM) adalah penyakit yang berhubungan dengan metabolisme yang ditandai dengan kenaikan kadar glukosa dalam darah atau hiperglikemi. Tujuan dari penelitian ini adalah mengetahui dinamik dari penyebaran DM menggunakan model matematika yaitu model yang memperhatikan faktor genetik dan faktor sosial. Penelitian ini memperoleh bilangan reproduksi dasar dan titik kesetimbangan bebas penyakit juga titik kesetimbangan endemik. Pada akhir penelitian, diberikan simulasi model dengan menggunakan aplikasi maple untuk mendukung teori yang diberikan.","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"455 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124311242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ESTIMASI PARAMETER MODEL REGRESI LINIER DENGAN PENDEKATAN METODE BAYESIAN","authors":"Surianti, Hikmah, Rahmawati","doi":"10.31605/jomta.v3i2.1364","DOIUrl":"https://doi.org/10.31605/jomta.v3i2.1364","url":null,"abstract":"The method used to estimate the regression parameters in this study is the Bayes method. The steps in estimating the parameters of the linear regression model using the Bayes method are to determine the Likelihood function from the normal distribution density function, determine the Prior Non-Informative distribution from a normal distribution, then look for the Posterior distribution by switching the Prior distribution with the Likelihood function.Writing this thesis aims to determine the estimation of the parameters of the linear regression model with the Bayesian method approach. From the regression model generated by the OLS method, it was identified that there was one Outlier data. Outlier is a factor that influences parameter estimation in linear regression model. A model will be shown in an example data case by comparing the results of the Ordinary Least Square (OLS) method using R and the results of the Bayesian method using WinBUGS. It can be seen that the MSE value obtained from the Bayesian Method estimation is smaller than the MSE value obtained from the OLS Method estimate. The Mean Square Error (MSE) value obtained from the estimation of the OLS Method is 0.8469 while the Mean Square Error (MSE) value obtained from the estimation of the Bayesian MCMC Method is 0.3723. This shows that the Bayesian MCMC method is much better than the OLS method. \u0000 \u0000 ","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"729 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123987652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"APLIKASI METODE ANALISIS KOMPONEN UTAMA (AKU) DALAM MENGIDENTIFIKASI FAKTOR YANG MEMENGARUHI KEMISKINAN DI KABUPATEN/KOTA PROVINSI SULAWESI SELATAN","authors":"Nurbiah Tahir, Wahidah Alwi, Khalilah Nurfadilah","doi":"10.31605/jomta.v3i2.1222","DOIUrl":"https://doi.org/10.31605/jomta.v3i2.1222","url":null,"abstract":"Penelitian ini membahas tentang terjadinya kasus kemiskinan di provinsi Sulawesi Selatan yang terus mengalami fluktuasi setiap tahunnya. Berdasarkan hasil SUSENAS Maret 2019, dibandingkan pada Maret 2018 yang mencapai 792.640 jiwa, persentase penduduk miskin turun 0,37% menjadi 767.800 jiwa. Karena kemiskinan bersifat multidimensi dan banyak faktor yang melatarbelakanginya, maka dilakukan penelitian ini dengan menggunakan metode Analisis Komponen Utama (AKU) untuk mengidentifikasi faktor-faktor tersebut. Analisis Komponen Utama (AKU) merupakan metode yang dapat menjadikan variabel penelitian ke dimensi yang lebih kecil tanpa menghilangkan informasi dari variabel asalnya. Adapun variabel yang di analisis yaitu Jumlah Penduduk , Tidak Tamat SD, SLTP, SLTA , Angka Melek Huruf (15-24th) , Angka Melek Huruf (15-55th) , Angka Partisipasi Sekolah (7-12th) , Angka Partisipasi Sekolah (13-15th) , Tidak Bekerja , Bekerja di Sektor Informal , Bekerja di Sektor Formal , Bekerja di Sektor Pertanian , Bekerja Bukan di Sektor Pertanian , Pengeluaran Konsumsi Makanan , Air Layak , Jamban Sendiri , Menerima Beras Miskin dan Sumber Penerangan Utama . Hasil penelitian menunjukkan bahwa terdapat 8 komponen yang terbentuk dari 18 variabel yang di analisis, yaitu faktor standar/kualitas kehidupan, kualitas pendidikan, ekonomi, pengangguran, lapangan pekerjaan, pola pikir, putus sekolah, serta kepadatan penduduk","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131292975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Syarat Perlu dan Syarat Cukup Seminear-ring Komutatif Terhadap Operasi Perkalian","authors":"Meryta Febrilian Fatimah -, Ahmad Ansar, Raswan","doi":"10.31605/jomta.v3i2.1390","DOIUrl":"https://doi.org/10.31605/jomta.v3i2.1390","url":null,"abstract":"Seminear-ring adalah hasil generalisasi dari semiring dan near-ring. Secara umum, seminear-ring belum tentu komutatif. Sehingga perlu diidentifikasi syarat perlu dan syarat cukup seminear-ring komutatif. Paper ini membahas seminear-ring komutatif khusus terhadap operasi perkalian, sebab terhadap operasi penjumlahannya belum tentu komutatif. Seminear-ring yang digunakan dalam paper ini adalah seminear-ring kanselasi dengan elemen satuan. Mathematics Subject Classification:16Y60,16Y99.","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114607003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PEMODELAN MATEMATIKA SEIqInqR PADA PENYEBARAN COVID-19","authors":"Masita, Darmawati, Fardinah","doi":"10.31605/jomta.v3i1.1375","DOIUrl":"https://doi.org/10.31605/jomta.v3i1.1375","url":null,"abstract":"Coronavirus is a disease that is transmitted to humans that usually causes respiratory tract infections, the common cold to serious illnesses. Currently, COVID-19 cases in Indonesia are increasing due to significant transmission in various regions and the entry of corona variants in Indonesia which spreads faster, therefore the number of deaths due to COVID-19 is also increasing and Indonesia has the highest death toll in the world. The purpose of this study is to build a model and analyze the SEIqInqR mathematical model there are two equilibrium points, namely disease-free and endemic. Model analysis was performed using the Routh-Hurwitz criteria to identify the eigenvalues. From the results of the analysis obtained that the disease-free equilibrium point will be stable if the value of R0 < 1 of the 0,004487 and the endemic equilibrium point will be stable if the value of R0>1 of this 4,303393 at the end of the study, a simulation model was given using the maple application.based on simulation results the disease will disapper and the disease will become epidemic","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"309 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115830494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}