用BAYESIAN方法对线性回归参数模型的估计

Surianti, Hikmah, Rahmawati
{"title":"用BAYESIAN方法对线性回归参数模型的估计","authors":"Surianti, Hikmah, Rahmawati","doi":"10.31605/jomta.v3i2.1364","DOIUrl":null,"url":null,"abstract":"The method used to estimate the regression parameters in this study is the Bayes method. The steps in estimating the parameters of the linear regression model using the Bayes method are to determine the Likelihood function from the normal distribution density function, determine the Prior Non-Informative distribution from a normal distribution, then look for the Posterior distribution by switching the Prior distribution with the Likelihood function.Writing this thesis aims to determine the estimation of the parameters of the linear regression model with the Bayesian method approach. From the regression model generated by the OLS method, it was identified that there was one Outlier data. Outlier is a factor that influences parameter estimation in linear regression model. A model will be shown in an example data case by comparing the results of the Ordinary Least Square (OLS) method using R and the results of the Bayesian method using WinBUGS. It can be seen that the MSE value obtained from the Bayesian Method estimation is smaller than the MSE value obtained from the OLS Method estimate. The Mean Square Error (MSE) value obtained from the estimation of the OLS Method is 0.8469 while the Mean Square Error (MSE) value obtained from the estimation of the Bayesian MCMC Method is 0.3723. This shows that the Bayesian MCMC method is much better than the OLS method. \n  \n ","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"729 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESTIMASI PARAMETER MODEL REGRESI LINIER DENGAN PENDEKATAN METODE BAYESIAN\",\"authors\":\"Surianti, Hikmah, Rahmawati\",\"doi\":\"10.31605/jomta.v3i2.1364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The method used to estimate the regression parameters in this study is the Bayes method. The steps in estimating the parameters of the linear regression model using the Bayes method are to determine the Likelihood function from the normal distribution density function, determine the Prior Non-Informative distribution from a normal distribution, then look for the Posterior distribution by switching the Prior distribution with the Likelihood function.Writing this thesis aims to determine the estimation of the parameters of the linear regression model with the Bayesian method approach. From the regression model generated by the OLS method, it was identified that there was one Outlier data. Outlier is a factor that influences parameter estimation in linear regression model. A model will be shown in an example data case by comparing the results of the Ordinary Least Square (OLS) method using R and the results of the Bayesian method using WinBUGS. It can be seen that the MSE value obtained from the Bayesian Method estimation is smaller than the MSE value obtained from the OLS Method estimate. The Mean Square Error (MSE) value obtained from the estimation of the OLS Method is 0.8469 while the Mean Square Error (MSE) value obtained from the estimation of the Bayesian MCMC Method is 0.3723. This shows that the Bayesian MCMC method is much better than the OLS method. \\n  \\n \",\"PeriodicalId\":400972,\"journal\":{\"name\":\"Journal of Mathematics : Theory and Application\",\"volume\":\"729 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics : Theory and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31605/jomta.v3i2.1364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics : Theory and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31605/jomta.v3i2.1364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究中用于估计回归参数的方法是贝叶斯方法。使用贝叶斯方法估计线性回归模型参数的步骤是:从正态分布密度函数中确定似然函数,从正态分布中确定先验非信息分布,然后通过将先验分布与似然函数交换来寻找后验分布。写这篇论文的目的是用贝叶斯方法确定线性回归模型的参数估计。从OLS法生成的回归模型中,发现有1个Outlier数据。在线性回归模型中,异常值是影响参数估计的一个因素。通过比较使用R的普通最小二乘(OLS)方法的结果和使用WinBUGS的贝叶斯方法的结果,将在一个示例数据案例中显示一个模型。可以看出,贝叶斯方法估计得到的MSE值小于OLS方法估计得到的MSE值。OLS方法估计得到的均方误差(Mean Square Error, MSE)为0.8469,贝叶斯MCMC方法估计得到的均方误差(Mean Square Error, MSE)为0.3723。这表明贝叶斯MCMC方法比OLS方法要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESTIMASI PARAMETER MODEL REGRESI LINIER DENGAN PENDEKATAN METODE BAYESIAN
The method used to estimate the regression parameters in this study is the Bayes method. The steps in estimating the parameters of the linear regression model using the Bayes method are to determine the Likelihood function from the normal distribution density function, determine the Prior Non-Informative distribution from a normal distribution, then look for the Posterior distribution by switching the Prior distribution with the Likelihood function.Writing this thesis aims to determine the estimation of the parameters of the linear regression model with the Bayesian method approach. From the regression model generated by the OLS method, it was identified that there was one Outlier data. Outlier is a factor that influences parameter estimation in linear regression model. A model will be shown in an example data case by comparing the results of the Ordinary Least Square (OLS) method using R and the results of the Bayesian method using WinBUGS. It can be seen that the MSE value obtained from the Bayesian Method estimation is smaller than the MSE value obtained from the OLS Method estimate. The Mean Square Error (MSE) value obtained from the estimation of the OLS Method is 0.8469 while the Mean Square Error (MSE) value obtained from the estimation of the Bayesian MCMC Method is 0.3723. This shows that the Bayesian MCMC method is much better than the OLS method.    
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信