分析ISPA疾病传播的数学模型

Nurfadilah, Hikmah, Fardinah
{"title":"分析ISPA疾病传播的数学模型","authors":"Nurfadilah, Hikmah, Fardinah","doi":"10.31605/jomta.v3i1.1373","DOIUrl":null,"url":null,"abstract":"Acute Respiratory Infection (ARI) is an infectious disease caused by bacteria and an unhealthy environment. The number of sufferers of this disease tends to increase and expand. The purpose of this study was to construct a mathematical model of the SEHAR epidemic (Suspectible-Exposed-Infected-Asthma-Recovered), analyze the stability of the equilibrium point and simulate the model. The results obtained are the SEHAR mathematical model for the spread of ARI disease which produces a disease-free equilibrium point and an endemic equilibrium point from the model. The method used is the stability analysis of the model using the Routh-Hurwitz Criteria to identify the characteristics of the eigenvalues. From the results of the stability analysis, it is found that the disease-free equilibrium point Eo and the endemic equilibrium point E1 are stable if the conditions for the relationship between parameters are met. At the end of the study, a simulation model was given using the Maple application","PeriodicalId":400972,"journal":{"name":"Journal of Mathematics : Theory and Application","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALISIS MODEL MATEMATIKA PENYEBARAN PENYAKIT ISPA\",\"authors\":\"Nurfadilah, Hikmah, Fardinah\",\"doi\":\"10.31605/jomta.v3i1.1373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acute Respiratory Infection (ARI) is an infectious disease caused by bacteria and an unhealthy environment. The number of sufferers of this disease tends to increase and expand. The purpose of this study was to construct a mathematical model of the SEHAR epidemic (Suspectible-Exposed-Infected-Asthma-Recovered), analyze the stability of the equilibrium point and simulate the model. The results obtained are the SEHAR mathematical model for the spread of ARI disease which produces a disease-free equilibrium point and an endemic equilibrium point from the model. The method used is the stability analysis of the model using the Routh-Hurwitz Criteria to identify the characteristics of the eigenvalues. From the results of the stability analysis, it is found that the disease-free equilibrium point Eo and the endemic equilibrium point E1 are stable if the conditions for the relationship between parameters are met. At the end of the study, a simulation model was given using the Maple application\",\"PeriodicalId\":400972,\"journal\":{\"name\":\"Journal of Mathematics : Theory and Application\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics : Theory and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31605/jomta.v3i1.1373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics : Theory and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31605/jomta.v3i1.1373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

急性呼吸道感染(ARI)是一种由细菌和不健康环境引起的传染病。患这种疾病的人数有增加和扩大的趋势。本研究的目的是建立SEHAR流行病(疑似-暴露-感染-哮喘-康复)的数学模型,分析平衡点的稳定性并对模型进行仿真。得到的结果是ARI疾病传播的SEHAR数学模型,该模型产生了无病平衡点和地方性平衡点。所采用的方法是利用Routh-Hurwitz准则对模型进行稳定性分析,以识别特征值的特征。稳定性分析结果表明,在满足参数关系的条件下,无病平衡点Eo和地方病平衡点E1是稳定的。在研究的最后,利用Maple应用程序给出了仿真模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALISIS MODEL MATEMATIKA PENYEBARAN PENYAKIT ISPA
Acute Respiratory Infection (ARI) is an infectious disease caused by bacteria and an unhealthy environment. The number of sufferers of this disease tends to increase and expand. The purpose of this study was to construct a mathematical model of the SEHAR epidemic (Suspectible-Exposed-Infected-Asthma-Recovered), analyze the stability of the equilibrium point and simulate the model. The results obtained are the SEHAR mathematical model for the spread of ARI disease which produces a disease-free equilibrium point and an endemic equilibrium point from the model. The method used is the stability analysis of the model using the Routh-Hurwitz Criteria to identify the characteristics of the eigenvalues. From the results of the stability analysis, it is found that the disease-free equilibrium point Eo and the endemic equilibrium point E1 are stable if the conditions for the relationship between parameters are met. At the end of the study, a simulation model was given using the Maple application
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信