Nano-Structures & Nano-Objects最新文献

筛选
英文 中文
Nanocarriers for nutraceutical delivery: A miniaturized revolution in health 用于营养保健品输送的纳米载体:健康领域的微型化革命
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-09-06 DOI: 10.1016/j.nanoso.2024.101321
Rajashri B. Sawant, Sonali P. Nikam, Arpita Roy, Ashish Kumar, Osama A. Mohammed, Kuldeep Sharma, Ashutosh Kumar Rai, Amit Roy, Ashish Gaur, Rajan Verma
{"title":"Nanocarriers for nutraceutical delivery: A miniaturized revolution in health","authors":"Rajashri B. Sawant, Sonali P. Nikam, Arpita Roy, Ashish Kumar, Osama A. Mohammed, Kuldeep Sharma, Ashutosh Kumar Rai, Amit Roy, Ashish Gaur, Rajan Verma","doi":"10.1016/j.nanoso.2024.101321","DOIUrl":"https://doi.org/10.1016/j.nanoso.2024.101321","url":null,"abstract":"With the development of nanocarriers, especially in the area of nutraceutical delivery, the rapidly expanding field of nanotechnology has brought in a new age of health and well-being. The revolutionary potential of nanocarriers to improve the stability, bioavailability, and effectiveness of nutraceutical substances is discussed in this review paper. It started with outlining the difficulties that conventional nutraceutical delivery systems have, such as their low solubility and restricted absorption, which frequently obstruct their therapeutic advantages. The various types of nanocarriers which act as nutraceuticals includes liposomes, lipids, and polymer-based materials also highlight of their special qualities and how they get around the problems outlined. Recent developments in nanocarrier technology are critically analyzed to show how these tiny particles may be designed to offer enhanced protection against bioactive compounds and targeted, controlled release. Here toxicity issues and international guidelines compliance while examining safety and regulatory factors relevant to the use of nanocarriers in nutraceuticals has also been discussed. This review concludes with a prospective outlook on the use of nanocarriers in nutraceuticals going ahead, highlighting the possibility of tailored nutrition and the significance of new developments in maintaining and averting illness. This review provides the present status and future prospects of nanocarrier technology in the improvement of nutraceutical delivery by merging recent research findings and expert perspectives.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":null,"pages":null},"PeriodicalIF":5.45,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of air annealing on structural, textural, thermal, magnetic and photocatalytic properties of Ag-doped mesoporous amorphous crystalline nanopowders Bi2O3 空气退火对掺银介孔无定形结晶纳米粉体 Bi2O3 的结构、纹理、热、磁和光催化性能的影响
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-09-05 DOI: 10.1016/j.nanoso.2024.101319
V.G. Ilves, V.S. Gaviko, A.M. Murzakaev, S.Y. Sokovnin, O.A. Svetlova, M.G. Zuev, M.A. Uimin
{"title":"Effect of air annealing on structural, textural, thermal, magnetic and photocatalytic properties of Ag-doped mesoporous amorphous crystalline nanopowders Bi2O3","authors":"V.G. Ilves, V.S. Gaviko, A.M. Murzakaev, S.Y. Sokovnin, O.A. Svetlova, M.G. Zuev, M.A. Uimin","doi":"10.1016/j.nanoso.2024.101319","DOIUrl":"https://doi.org/10.1016/j.nanoso.2024.101319","url":null,"abstract":"Ag doped BiO nanopowders (NPs) were produced by pulsed electron beam evaporation (PEBE) under vacuum. The solid phase synthesis in an electric furnace on air was used for silver doping of bismuth oxide. Different physicochemical properties of NPs have been studied. The specific surface area of (SSA) Ag- BiO NPs was 23.7 m/g. Air annealing (200 °C) caused decreased crystallinity and an increase in the SSA of both pure and Ag-doped bismuth oxide. The dominant phase in not annealed/annealed Ag doped BiO NPs at 200 °C and 300 °C was β -phase BiO. The thermal stability of the pure and Ag-doped BiO NPs was maintained at 300–350 °C. The phase transition β→α occurred with a further increase in temperature. The annealing temperature could effectively change the physicochemical properties of the BiO NPs.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":null,"pages":null},"PeriodicalIF":5.45,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesis and characterization studies of TiO2 nanoparticles and its potential biological performance TiO2 纳米粒子的绿色合成和表征研究及其潜在的生物性能
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-09-04 DOI: 10.1016/j.nanoso.2024.101322
R. Ramya, G. Muthulakshmi, S. Sudhahar, A. Bhaskaran
{"title":"Green synthesis and characterization studies of TiO2 nanoparticles and its potential biological performance","authors":"R. Ramya, G. Muthulakshmi, S. Sudhahar, A. Bhaskaran","doi":"10.1016/j.nanoso.2024.101322","DOIUrl":"https://doi.org/10.1016/j.nanoso.2024.101322","url":null,"abstract":"Recent interest was been sparked by the potential of eco-friendly nanomaterials against human pathogenic bacteria’s and cancer cells. In the first method, TiO was obtained from green synthesis method by using seed extraction. In the second method, TiO nanoparticles were chemically synthesized by using the sol-gel process. Powder XRD, UV-Vis, ATR-IR, FESEM with EDAX, and HR-TEM were used to analyze the characteristics of the synthesized TiO nanoparticles. XRD results showed the well-developed crystallized smaller particles. The sizes of the crystalline particles were estimated by using Size-Strain Plot (SSP). The disc diffusion method was used to examine the antibacterial activity of TiO nanoparticles against gram bacteria. The synthesized TiO nanoparticles showed the largest inhibition zone and found to be more antibacterial against gram-negative bacteria. When using the green synthesized nanoparticles at a dose of 1000 µg/mL, the largest zone of inhibition against measured 15 mm. Then, the chemically synthesized TiO had the same concentration exhibited 7 mm inhibition zone. Cytotoxicity activities of human breast cancer cell were evolved by using MTT assay and their observation were showed more efficient cytotoxicity of green synthesized TiO nanoparticles compared to the chemically synthesized TiO nanoparticles. The antioxidant activity potential of green and chemically synthesized titanium dioxide nanoparticles was examined and the maximum inhibition in 400 µg/mL concentrations was reported to be 53 % and 45 %, respectively. Bovine Serum Albumin (BSA) denaturation technique revealed the significant anti-inflammatory action of green synthesized TiO, with protein denaturation of egg albumin determined as 92.2 % at 400 µg/mL concentration.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":null,"pages":null},"PeriodicalIF":5.45,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential in vitro antibacterial and anticancer properties of biosynthesized multifunctional silver nanoparticles using Martynia annua L. leaf extract 利用茉莉花叶提取物生物合成的多功能银纳米粒子的潜在体外抗菌和抗癌特性
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-09-04 DOI: 10.1016/j.nanoso.2024.101320
Megha B. Abbigeri, Bothe Thokchom, Santosh Mallikarjun Bhavi, Sapam Riches Singh, Pooja Joshi, Ramesh Babu Yarajarla
{"title":"Potential in vitro antibacterial and anticancer properties of biosynthesized multifunctional silver nanoparticles using Martynia annua L. leaf extract","authors":"Megha B. Abbigeri, Bothe Thokchom, Santosh Mallikarjun Bhavi, Sapam Riches Singh, Pooja Joshi, Ramesh Babu Yarajarla","doi":"10.1016/j.nanoso.2024.101320","DOIUrl":"https://doi.org/10.1016/j.nanoso.2024.101320","url":null,"abstract":"L., a medicinal herb rich in secondary metabolites, serves as a sustainable source for synthesizing silver nanoparticles (AgNPs). This study explores the eco-friendly production of AgNPs using aqueous leaf extract from and evaluates their biomedical applications. Characterization techniques including UV-Visible spectroscopy, FT-IR, SEM, TEM, and XRD confirm the spherical shape and FCC structure of the AgNPs, with a mean size of ∼11 nm and a surface charge of −24.4 mV. Biologically, the AgNPs exhibit potent antibacterial activity against both Gram positive and Gram negative bacteria, with dosage-dependent inhibition zones. AgNPs exhibited zone of inhibition comparable to those of standard antibiotic, penicillin, against Gram positive bacteria ( 22.09 mm and 23.72 mm) and Gram negative bacteria (, 13.82 mm and , 14.81 mm). They demonstrate cytotoxicity against NIH 3T3 and MCF-7 cells, with IC of 23.46 μg mL and 19.15 μg mL in cytotoxicity and anticancer assays, respectively. Notably, fragmentation assays reveal smear formation, indicating potential for inducing apoptosis. The synthesized AgNPs from exhibit spherical morphology, moderate stability, and significant antibacterial and anticancer properties, suggesting their potential as versatile biomedical agents.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":null,"pages":null},"PeriodicalIF":5.45,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of magnetic and electric properties of bismuth ferrite nanoparticles at different temperatures 不同温度下铋铁氧体纳米粒子的磁性和电性研究
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-09-01 DOI: 10.1016/j.nanoso.2024.101304
{"title":"Investigation of magnetic and electric properties of bismuth ferrite nanoparticles at different temperatures","authors":"","doi":"10.1016/j.nanoso.2024.101304","DOIUrl":"10.1016/j.nanoso.2024.101304","url":null,"abstract":"<div><p>Multiferroic bismuth ferrite shows a massive interest in its potential application in magnetic and electronic devices however maintaining high purity in bismuth ferrite nanoparticles at different temperatures is a difficult task for researchers. Several samples are prepared with different annealing temperatures and investigated in different atmospheres to recognize magnetic and electrical properties. A xerogel powder of bismuth ferrite is synthesized by the sol-gel route. The powder then anneals at 500, 600, 700, and 800 °C to form a nanostructure. X-ray diffraction analysis confirms that the annealed samples are in rhombohedral structure with R3c space symmetry and show a significant increase in crystal size and reduction in lattice strain with increasing annealing temperature. FESEM reveals the microstructural features of annealed nanoparticles which represent the conversion of spherical to cubic morphology with annealing temperature. Vibrating sample magnetometer investigations were conducted as a function of annealing and surface (300, 200, 80 K) temperatures. Insignificant variations of saturation magnetization are detected with surface temperature, but considerable degradation is observed with increasing annealing temperatures. The band-gap energy of bismuth ferrite nanoparticles annealed at 500, 600, 700, and 800 ºC is measured and significant escalation is observed from 1.93 to 2.06 eV. Electrical property analyses have been investigated as a function of frequency at different surface temperatures of 50, 100, 150, 200, 250, 300, and 350 °C. Remarkable variations are established in the electric and magnetic properties. Bismuth ferrite has been widely investigated due to its promising multifunctional device applications such as memory devices, spintronics, sensors, actuators, and photocatalytic and photovoltaic applications.</p></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":null,"pages":null},"PeriodicalIF":5.45,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring structural and magnetic properties of NiCu nanowires by electrodeposition 利用电沉积技术定制镍铜纳米线的结构和磁性能
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-09-01 DOI: 10.1016/j.nanoso.2024.101309
{"title":"Tailoring structural and magnetic properties of NiCu nanowires by electrodeposition","authors":"","doi":"10.1016/j.nanoso.2024.101309","DOIUrl":"10.1016/j.nanoso.2024.101309","url":null,"abstract":"<div><p>In this work, we investigated the tailoring of structural and magnetic properties of NiCu nanowires through electrodeposition. Continuous (S1) and composition-modulated (S2) wires were fabricated by electrodeposition using porous alumina membranes as a template. Morphological characterization revealed that the total length of the wires was 8 ± 3 µm in both S1 and S2. For the composition-modulated wires, the length of the segments with the lowest and highest Cu concentrations was 1.2 ± 0.4 µm and 226 ± 65 nm, respectively. Mapping by energy dispersive spectroscopy (EDS) revealed that the concentration of copper and nickel varied along the length of the composition-modulated nanowires, while the continuous nanowires contained a relatively constant concentration of both metals. It is demonstrated that the change in Cu concentration along the wire modifies the lattice parameter, average crystallite size (<em>D</em>) and lattice strain (<em>ε</em>) of Ni. This result is pivotal for understanding the magnetic properties of the wires, as nickel is primarily responsible for the magnetic behavior of the wires. From the ferromagnetic resonance (FMR) results, the linewidth and resonance field values for samples S1 and S2 were determined. It was demonstrated that the greater deformation in the nickel lattice in NiCu nanowires increases the angular dependence of the resonance field. Furthermore, the smaller nickel crystallite size was shown to increase spin dispersion and magnetic damping, leading to complex behavior in FMR responses. Finally, it was demonstrated how Cu can influence the magnetic properties such as coercivity (<em>H</em><sub><em>C</em></sub>) and squareness (<em>M</em><sub><em>R</em></sub>/<em>M</em><sub><em>S</em></sub>) of the wires. Overall, this work contributes to understanding the tailoring of structural and magnetic properties of NiCu nanowires through electrodeposition.</p></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":null,"pages":null},"PeriodicalIF":5.45,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-domain configuration tune high coercive field in Co-precipitated monazite-decorated cobalt ferrite nanoparticles 单域构型调节共沉淀蒙脱石装饰钴铁氧体纳米粒子中的高矫顽力场
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-09-01 DOI: 10.1016/j.nanoso.2024.101301
{"title":"Single-domain configuration tune high coercive field in Co-precipitated monazite-decorated cobalt ferrite nanoparticles","authors":"","doi":"10.1016/j.nanoso.2024.101301","DOIUrl":"10.1016/j.nanoso.2024.101301","url":null,"abstract":"<div><p>Single-domain configuration is one of the important key in the applied current- technology especially information technology. In order to address this issue, a magnetic modification of cobalt ferrite nanoparticles (CFO-NPs) by decorating the monazite-natural-mineral (Ce) is presented. Monazite-decorated CFO-NPs are successfully synthesized by the co-precipitation method. The obtained nanoparticle samples are annealed at 200 °C, 300 °C, and 400 °C for 5 hours. XRD results confirms the successful decoration of the monazite sand with CFO-NPs, as demonstrated by the distinctive peaks of CFO-NPs, as well as the major peaks of the monazite-sand. The presence of monazite in the CFO-NPs sample was confirmed by the EDS results. With increasing annealing temperature, the crystallite size increases, respectively. FTIR results show that the monazite-decorated CFO-NPs outcome absorption peaks at <em>k</em><sub>t</sub> ∼590/cm and <em>k</em><sub>o</sub> ∼390/cm, which are the original absorptions of CFO-NPs. VSM results showed that the single-domain configuration realized owing high the <em>H</em><sub>C</sub> (supported by <em>K</em><sub>1</sub> and <em>K</em><sub>σ</sub>) for samples without and annealed at 200 °C, whereas the multi-domain configuration appears to have a small <em>H</em><sub>C</sub> (supported only by <em>K</em><sub>1</sub>) for samples annealed at 300 °C and 400 °C. The largest <em>H</em><sub>C</sub> of the monazite-decorated CFO-NPs was obtained with the annealing temperature at 200 °C, i.e., 3.02 kOe, suggesting that it be supported by both the <em>K</em><sub>1</sub> and <em>K</em><sub>σ</sub>. The magnetic properties obtained also indicate the potential for developing permanent magnets.</p></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":null,"pages":null},"PeriodicalIF":5.45,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functionalization of ZnO nanoparticles and their antimicrobial activity: In vitro 氧化锌纳米粒子的功能化及其抗菌活性:体外
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-08-31 DOI: 10.1016/j.nanoso.2024.101314
A.S. Alameen, S.B. Undre, P.B. Undre
{"title":"Functionalization of ZnO nanoparticles and their antimicrobial activity: In vitro","authors":"A.S. Alameen, S.B. Undre, P.B. Undre","doi":"10.1016/j.nanoso.2024.101314","DOIUrl":"https://doi.org/10.1016/j.nanoso.2024.101314","url":null,"abstract":"The precipitation process was used to synthesize ZnO nanoparticles (ZnO NPs), which were functionalized with fifteen amino acids and three surfactants. X-ray diffraction (XRD), field emission scanning microscopy (FESEM) with energy-dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy (FTIR), Raman spectroscopy, and UV-Vis spectroscopy were used to evaluate the synthesized and functionalized ZnO NPs. The characterization of the produced ZnO using XRD and FESEM revealed the development of a nanoscale hexagonal crystal, and the spectroscopic methods validated the presence of IR functional groups, Raman phase mode, and UV optical absorbance. The ZnO samples that had been functionalized demonstrated deformation in a surface morphology while maintaining chemical stability. The functionalization procedure effectively increases the inhibitory efficacy of NPs against (Accession No. MZ435922) and (Accession No. MZ435863), as demonstrated by the antifungal activity. The findings of current work provide a foundation for improving the biological activity of NPs against fungi by modifying them with active medium and boosting their anti-microorganism and antioxidant activity.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":null,"pages":null},"PeriodicalIF":5.45,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and characterization of metronidazole-based ZnMoO₄ nanocomposite: Photocatalysis and antifungal activity 甲硝唑基 ZnMoO₄纳米复合材料的合成与表征:光催化和抗真菌活性
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-08-31 DOI: 10.1016/j.nanoso.2024.101306
Bhupendra Kande, Prachi Parmar Nimje, Bhawana Jain, Sanju Singh
{"title":"Synthesis and characterization of metronidazole-based ZnMoO₄ nanocomposite: Photocatalysis and antifungal activity","authors":"Bhupendra Kande, Prachi Parmar Nimje, Bhawana Jain, Sanju Singh","doi":"10.1016/j.nanoso.2024.101306","DOIUrl":"https://doi.org/10.1016/j.nanoso.2024.101306","url":null,"abstract":"This study introduces a novel Metronidazole-Based ZnMoO₄ Nanocomposite (MTZ-ZnMO), a hybrid material combining ZnMoO₄ and metronidazole (MTZ) that exhibits significant potential for photocatalytic and antifungal applications. The nanocomposite was synthesized using a facile hydrothermal method and characterized using various analytical techniques including X-ray diffraction (XRD), Fourier scanning electron microscope (FESEM), Energy dispersive spectroscopy (EDS), Photo-luminance emission spectra (PL) and UV-Visible spectroscopy. The photocatalytic performance of the nanocomposite was evaluated through the degradation of methylene blue (MB) visible light irradiation. Additionally, its antifungal properties were assessed against common fungi . Results demonstrated incorporation of MTZ resulted in enhanced photocatalytic degradation of MB under visible light irradiation and concentration dependent antifungal activity against . These findings highlight the material’s multifunctional potential for use in environmental remediation and catalytic applications, offering a promising approach to integrating photocatalytic and antifungul properties in a single nanocomposite.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":null,"pages":null},"PeriodicalIF":5.45,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A sustainable approach on utilization of waste-derived biochar in microbial fuel cell toward net-zero coalition 在微生物燃料电池中利用源自废物的生物炭实现净零联盟的可持续方法
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-08-31 DOI: 10.1016/j.nanoso.2024.101307
V.C. Deivayanai, P. Thamarai, R. Kamalesh, Alan Shaji, P.R. Yaashikaa, A. Saravanan
{"title":"A sustainable approach on utilization of waste-derived biochar in microbial fuel cell toward net-zero coalition","authors":"V.C. Deivayanai, P. Thamarai, R. Kamalesh, Alan Shaji, P.R. Yaashikaa, A. Saravanan","doi":"10.1016/j.nanoso.2024.101307","DOIUrl":"https://doi.org/10.1016/j.nanoso.2024.101307","url":null,"abstract":"The growing need for sustainable energy solutions has led to the convergence of waste management and renewable energy technologies. This study delves into the application of waste-derived biochar in microbial fuel cells (MFC) to achieve a net-zero carbon footprint, contributing to the global sustainability agenda. Biochar, a carbon-rich product attained from the pyrolysis of organic waste materials, is examined for its dual role in waste management strategies and as an effective electrode material in MFC. The inherent characteristics of the biochar, including the porosity, surface area and conductivity, enhance the overall performance of MFCs, as well as the microbial activity such as nutrient retention and pH buffering, and promote efficient electron transfer. The current review emphasizes biochar's different sources, characteristics, and synthesis techniques. This review also discusses the application of biochar in MFC as anode and cathode, followed by its utilisation in soil amendment and bioelectricity generation. It also reviews the relationship between the economic analysis and the utilisation of biochar as electrode materials. Regardless of the synthesis techniques and biochar application, the limitations and future outlooks have also been discussed in detail.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":null,"pages":null},"PeriodicalIF":5.45,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信