{"title":"How fern and fern allies respond to heterogeneous habitat - a case in Yuanjiang dry-hot valley.","authors":"Feng-Chun Yang, Chaya Sarathchandra, Jing-Xin Liu, Hua-Ping Huang, Jian-Yong Gou, Ye Li, Xiao-Ye Mao, Hui-Ting Wen, Jun Zhao, Ming-Fu Yang, Suthathong Homya, Kritana Prueksakorn","doi":"10.1080/19420889.2021.2007591","DOIUrl":"https://doi.org/10.1080/19420889.2021.2007591","url":null,"abstract":"<p><p>The Yuanjiang dry-hot valley features hot and dry climate, low vegetation and soil degradation. It had lush vegetation in the past, but has become degraded in recent decades. Understanding the interrelationship between species and the habitat is necessary to explain this change. In this study, a link between fern and fern allies - a group that is hypersensitive to environmental factors and their circumstances is constructed. Intensive transects and plots were designed to be proxies for extant fern and fern allies, and their habitats. Fifty years of meteorological records of precipitation and temperature along altitude and river running direction (latitudinal) were employed. Alpha and beta diversity are used to access diversity. Species_estimated, Singletons, Uniques, ACE, ICE, and Chao2, which associate to abundance and rarity, are subscribed to the correlation between fern and fern allies, and their ecosystem. Eight species, <i>Selaginella pseudopaleifera, Aleuritopteris squamosa, Adiantum malesianum, Pteris vittata, Davallia trichomanoides, Sinephropteris delavayi, Selaginella jugorum</i>, and <i>Lygodium japonicum</i> are used as indicators of a typical xeric and sun-drying habitat. The results indicate (1) accompanied by dramatically shrinking habitats, fern and fern allies are in very low diversity and abundance, whereas the rarity is relatively high; (2) for fern and fern allies, environmental factors are positive when altitude goes up; and (3) eight indicator species are latitudinally correlated with fern and fern allies along the river running direction.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":"14 1","pages":"248-260"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8677019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39851954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lifting the veil on Bohm's holomovement.","authors":"Andrew Lohrey, Bruce Boreham","doi":"10.1080/19420889.2021.2001157","DOIUrl":"https://doi.org/10.1080/19420889.2021.2001157","url":null,"abstract":"<p><p>In this paper, we argue that Bohm's unbroken and undivided totality he called the holomovement, the title he gave to the concept of the self-organizing universe, is more coherently understood when viewed as universal consciousness. Bohm's understanding of consciousness oscillates around being a quality of local minds and the interconnected totality of the holomovement. We suggest such equivocations impose limitations on Bohm's general holistic framework because they import into his model the limiting restrictions of Cartesian separation and are, therefore, incongruous for use within his holistic model of the holomovement. We also argue that the term 'meaning' has a structural and functional agency appropriate to Bohm's model of the holomovement, while also reflecting the living characteristics of this organic totality that is full of meaning.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":"14 1","pages":"221-229"},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632281/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39800124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Blanche Aguida, Marootpong Pooam, Margaret Ahmad, Nathalie Jourdan
{"title":"Infrared light therapy relieves TLR-4 dependent hyper-inflammation of the type induced by COVID-19.","authors":"Blanche Aguida, Marootpong Pooam, Margaret Ahmad, Nathalie Jourdan","doi":"10.1080/19420889.2021.1965718","DOIUrl":"https://doi.org/10.1080/19420889.2021.1965718","url":null,"abstract":"<p><p>The leading cause of mortality from COVID-19 infection is respiratory distress due to an exaggerated host immune response, resulting in hyper-inflammation and ensuing cytokine storms in the lungs. Current drug-based therapies are of limited efficacy, costly, and have potential negative side effects. By contrast, photobiomodulation therapy, which involves periodic brief exposure to red or infrared light, is a noninvasive, safe, and affordable method that is currently being used to treat a wide range of diseases with underlying inflammatory conditions. Here, we show that exposure to two 10-min, high-intensity periods per day of infrared light causes a marked reduction in the TLR-4 dependent inflammatory response pathway, which has been implicated in the onset of cytokine storms in COVID-19 patients. Infrared light exposure resulted in a significant decline in NFkB and AP1 activity as measured by the reporter gene assay; decreased expression of inflammatory marker genes IL-6, IL-8, TNF-alpha, INF-alpha, and INF-beta as determined by qPCR gene expression assay; and an 80% decline in secreted cytokine IL6 as measured by ELISA assay in cultured human cells. All of these changes occurred after only 48 hours of treatment. We suggest that an underlying cellular mechanism involving modulation of ROS may downregulate the host immune response after Infrared Light exposure, leading to decrease in inflammation. We further discuss technical considerations involving light sources and exposure conditions to put these observations into potential clinical use to treat COVID-19 induced mortality.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":"14 1","pages":"200-211"},"PeriodicalIF":0.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8451450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39440521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stem cells part of the innate and adaptive immune systems as a therapeutic for Covid-19.","authors":"Greg Maguire","doi":"10.1080/19420889.2021.1965356","DOIUrl":"10.1080/19420889.2021.1965356","url":null,"abstract":"<p><p>Some stem cell types not only release molecules that reduce viral replication, but also reduce the hypercytokinemia and inflammation induced by the immune system, and have been found to be part of the innate and adaptive immune systems. An important component of the stem cell's ability to ameliorate viral diseases, especially the complications post-clearance of the pathogen, is the ability of adult stem cells to reset the innate and adaptive immune systems from an inflammatory state to a repair state. Thus, the molecules released from certain stem cell types found to be safe and efficacious, may be an important new means for therapeutic development in Covid-19, especially for late-stage inflammation and tissue damage once the virus has cleared, particularly in the aged population.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":"14 1","pages":"186-198"},"PeriodicalIF":0.0,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39439910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vinicio Armijos-Jaramillo, Andrea Mosquera, Brian Rojas, Eduardo Tejera
{"title":"The search for molecular mimicry in proteins carried by extracellular vesicles secreted by cells infected with <i>Plasmodium falciparum</i>.","authors":"Vinicio Armijos-Jaramillo, Andrea Mosquera, Brian Rojas, Eduardo Tejera","doi":"10.1080/19420889.2021.1972523","DOIUrl":"10.1080/19420889.2021.1972523","url":null,"abstract":"<p><p>Red blood cells infected with <i>Plasmodium falciparum</i> secrete extracellular vesicles in order to facilitate the survival and infection of human cells. Various researchers have studied the composition of these extracellular vesicles and identified the proteins contained inside. In this work, we used that information to detect potential <i>P. falciparum</i> molecules that could be imitating host proteins. We carried out several searches to detect sequences and structural similarities between the parasite and host. Additionally, the possibility of functional mimicry was explored in line with the potential role that each candidate can perform for the parasite inside the host. Lastly, we determined a set of eight sequences (mainly moonlighting proteins) with a remarkable resemblance to human proteins. Due to the resemblance observed, this study proposes the possibility that certain <i>P. falciparum</i> molecules carried by extracellular vesicles could be imitating human proteins to manipulate the host cell's physiology.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":"14 1","pages":"212-220"},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39439911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cracking the code: a comparative approach to plant communication.","authors":"Bianca Bonato, Francesca Peressotti, Silvia Guerra, Qiuran Wang, Umberto Castiello","doi":"10.1080/19420889.2021.1956719","DOIUrl":"https://doi.org/10.1080/19420889.2021.1956719","url":null,"abstract":"<p><p>The linguistic behavior of humans is usually considered the point of reference for studying the origin and evolution of language. As commonly defined, language is a form of communication between human beings; many have argued that it is unique to humans as there is no apparent equivalent for it in non-human organisms. How language is used as a means of communication is examined in this essay from a biological perspective positing that it is effectively and meaningfully used by non-human organisms and, more specifically, by plants. We set out to draw parallels between some aspects characterizing human language and the chemical communication that occurs between plants. The essay examines the similarities in ways of communicating linked to three properties of language: its combinatorial structure, meaning-making activities and the existence of dialects. In accordance with the findings of researchers who have demonstrated that plants do indeed communicate with one another and with organisms in their environment, the essay concludes with the appeal for an interdisciplinary approach conceptualizing a broader ecological definition of language and a constructive dialogue between the biological sciences and the humanities.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":"14 1","pages":"176-185"},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8381849/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39344508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling the role of gravitation in metabolic processes.","authors":"Steve Thorne","doi":"10.1080/19420889.2021.1914913","DOIUrl":"https://doi.org/10.1080/19420889.2021.1914913","url":null,"abstract":"<p><p>All living organisms are gravitationally bound to earth's surface and spun through three major gravitational potentials at nearly Mach 88. Along this pathway, organisms are subjected to non-isotropic strains that are repetitive in their geometry and their periodicity. Because of the relative smallness of this bias and the slow rate at which such strain accumulates, it typically goes undetected or treated stochastically as a variance from 'best-fit' models and woven into our empirical data. Far from being purely isotropic, equilibrium in systems co-moving with the earth possesses a dynamic component with bias defined by our orbital motion. Interestingly, biologists identify a similar bias in living organisms expressed in the chiral nature of key metabolic molecules and the periodicities of their metabolic cycles. Biologists have also identified a mean mass-specific metabolic rate that correlates well with the daily change in gravitational potential energy experienced by an organism. The evidence is only correlative, but it raises the intriguing question of whether 3 billion years of exposure to gravitational strain cycles might have led to a metabolic strategy that coupled to them. Because the subject of gravity has been omitted from most biology textbooks and, with only a few notable exceptions, relegated to the far corners of biology conferences, this paper is written with two goals in mind. The first goal is to summarize the extensive experimental record produced by biologists, botanists, and zoologists, identifying the strong correlation between metabolic processes and orbital periodicities. The second goal is to suggest experiments that might provide insight into how metabolic processes and gravitation might be so coupled.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":"14 1","pages":"115-135"},"PeriodicalIF":0.0,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19420889.2021.1914913","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39277107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regulation of diverse nuclear shapes: pathways working independently, together.","authors":"Pallavi Deolal, Krishnaveni Mishra","doi":"10.1080/19420889.2021.1939942","DOIUrl":"10.1080/19420889.2021.1939942","url":null,"abstract":"<p><p>Membrane-bound organelles provide physical and functional compartmentalization of biological processes in eukaryotic cells. The characteristic shape and internal organization of these organelles is determined by a combination of multiple internal and external factors. The maintenance of the shape of nucleus, which houses the genetic material within a double membrane bilayer, is crucial for a seamless spatio-temporal control over nuclear and cellular functions. Dynamic morphological changes in the shape of nucleus facilitate various biological processes. Chromatin packaging, nuclear and cytosolic protein organization, and nuclear membrane lipid homeostasis are critical determinants of overall nuclear morphology. As such, a multitude of molecular players and pathways act together to regulate the nuclear shape. Here, we review the known mechanisms governing nuclear shape in various unicellular and multicellular organisms, including the non-spherical nuclei and non-lamin-related structural determinants. The review also touches upon cellular consequences of aberrant nuclear morphologies.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":"14 1","pages":"158-175"},"PeriodicalIF":0.0,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259725/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39184598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marlena Lembicz, Zbigniew Miszalski, Andrzej Kornaś, Katarzyna Turnau
{"title":"Cooling effect of fungal stromata in the <i>Dactylis-Epichloë-Botanophila</i> symbiosis.","authors":"Marlena Lembicz, Zbigniew Miszalski, Andrzej Kornaś, Katarzyna Turnau","doi":"10.1080/19420889.2021.1938824","DOIUrl":"https://doi.org/10.1080/19420889.2021.1938824","url":null,"abstract":"<p><p>The stromata of <i>Epichloë</i> fungi are structures covering part of the stem of grasses. Under the fungal layer, still green tissues of the plant survive, although the development of the new leaves is inhibited. Stromata are the places where conidia and ascospores develop. Also, here <i>Botanophila</i> flies dine on mycelium, lay the eggs, defecate, and the larvae develop. The interaction of the three symbionts was analyzed concerning the organisms' adaptation to understand the differences in physiology and ecology of this microenvironment that support stable symbiosis spreading presently in Europe since the beginning of the XXI century. For analysis of the infrared radiation emitted by stromata, a high-resolution infrared camera FLIR E50 was used. The visualization of stromata temperature profiles was shown in the form of pseudo-colored (false) infrared images. The <sup>13</sup>C discrimination was used to characterize photosynthesis of the plant tissue enclosed within the stromata. The stromata had a substantially lower temperature than the green plant tissues. The difference reached ~5.6°C during midday hours, whereas it was smaller in the evening, reaching only ~3.6°C. The mycelium of <i>Epichloë</i> cultivated on agar showed about 2°C lower temperature in comparison to the surrounding. The plant tissues enclosed within the stroma were photosynthetically active, although this activity was of phosphoenolpyruvate carboxylase (PEPC) type and less involved in heat dissipation during the day. The stromata, built by fungal hyphae, on which fungal reproductive structures develop, form a cool shelter. This shelter provides a place for the larvae of <i>Botanophila</i> flies.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":"14 1","pages":"151-157"},"PeriodicalIF":0.0,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19420889.2021.1938824","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39166672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbial amelioration of salinity stress in HD 2967 wheat cultivar by up-regulating antioxidant defense.","authors":"Madhulika Singh, Neha Tiwari","doi":"10.1080/19420889.2021.1937839","DOIUrl":"10.1080/19420889.2021.1937839","url":null,"abstract":"<p><p>An experiment was conducted to investigate the potential of <i>Piriformospora indica</i> and plant growth-promoting bacteria (PGPB) to ameliorate salinity stress in HD 2967 wheat cultivar. Plants were treated with four different levels of salinity viz. 0, 50, 100 and 200 mM NaCl (electrical conductivity value 0.01, 5.84, 11.50 and 21.4 mS cm<sup>-1</sup>, respectively) under greenhouse conditions, using a completely randomized design experiment. Plants inoculated with PGPB and <i>P. indica</i> showed decrease in lipid peroxidation, relative membrane permeability and lipoxygenase enzyme (LOX) activity as compared to uninoculated plants. The result of this study showed that PGPB and <i>P. indica</i> inoculated HD 2967 wheat plants accumulated higher content of proline, α-tocopherol and carotenoid as compared to uninoculated plants. The HD 2967 wheat plants either inoculated with PGPB or <i>P. indica</i> showed significantly higher activities of antioxidant enzymes viz. superoxide dismutase, catalase and ascorbate peroxidase than that of the uninoculated plants. Moreover, PGPB inoculated plants showed greater activity of antioxidant enzymes than the plants inoculated with <i>P. indica</i>. Salinity stress tolerance was more pronounced in the PGPB inoculated than <i>P. indica</i> inoculated plants. This study revealed the potentiality of PGPB and <i>P. indica</i> as bio-ameliorator under salinity stress, and suggests that this plant microbial association could be a promising biotechnological tool to combat the deleterious effects of salinity stress.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":"14 1","pages":"136-150"},"PeriodicalIF":0.0,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39166671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}