Molecular Catalysis最新文献

筛选
英文 中文
Zr-based MOF as a support for lipase immobilization to enhance enzymatic transesterification for biodiesel production 以 Zr 基 MOF 为支撑固定脂肪酶,增强生物柴油生产中的酶促酯交换反应
IF 3.9 2区 化学
Molecular Catalysis Pub Date : 2024-10-09 DOI: 10.1016/j.mcat.2024.114603
Xiangsheng Zheng, Xiaohong Hao, Yan Wang, Siyu Gao, Dantong Wen, Jinchuan Wang
{"title":"Zr-based MOF as a support for lipase immobilization to enhance enzymatic transesterification for biodiesel production","authors":"Xiangsheng Zheng,&nbsp;Xiaohong Hao,&nbsp;Yan Wang,&nbsp;Siyu Gao,&nbsp;Dantong Wen,&nbsp;Jinchuan Wang","doi":"10.1016/j.mcat.2024.114603","DOIUrl":"10.1016/j.mcat.2024.114603","url":null,"abstract":"<div><div>The development of novel biocatalysts is essential to promote the commercialization of biodiesel production by transesterification reaction. In this paper, <em>Rhizopus oryzae</em> lipase (ROL) was immobilized on an amino-functionalized zirconium-based metal organoskeleton by interfacial adsorption. The immobilization conditions were optimized and the enzymatic properties were tested, and the resulting novel biocatalysts exhibited higher stability and heat resistance. SEM, XRD and BET analyses were used to characterize the biocatalysts and carrier materials. The catalytic performance of ROL@UiO-66-NH<sub>2</sub> in the production of biodiesel by transesterification reaction was explored, and the production process was optimized by response surface method. The results showed that the conversion rate of FAEE reached 82.05% at molar ratio of ethanol/oil of 15.43:1, reaction temperature of 50.28°C, reaction time of 120.9 min, DES addition of 48.08 wt%, biocatalyst addition of 3 wt%, and ultrasonic power of 90 W. In addition, ROL@UiO-66-NH<sub>2</sub> demonstrated good recyclability, with the catalytic efficiency remaining at 71.87% after five cycles.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114603"},"PeriodicalIF":3.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of SCD3-containing bicyclo[1.1.1]pentanes enabled by photocatalyzed difunctionalization of [1.1.1]propellane 通过光催化[1.1.1]丙烷的二官能化合成含 SCD3 的双环[1.1.1]戊烷
IF 3.9 2区 化学
Molecular Catalysis Pub Date : 2024-10-09 DOI: 10.1016/j.mcat.2024.114592
Yumiao Liu , Qing Pang , Binbin Chen , Zizhen Zhu , Jiabin Shen , Pengfei Zhang
{"title":"Synthesis of SCD3-containing bicyclo[1.1.1]pentanes enabled by photocatalyzed difunctionalization of [1.1.1]propellane","authors":"Yumiao Liu ,&nbsp;Qing Pang ,&nbsp;Binbin Chen ,&nbsp;Zizhen Zhu ,&nbsp;Jiabin Shen ,&nbsp;Pengfei Zhang","doi":"10.1016/j.mcat.2024.114592","DOIUrl":"10.1016/j.mcat.2024.114592","url":null,"abstract":"<div><div>Bicyclo[1.1.1]pentanes (BCPs) have emerged as appealing bioisosteres for <em>para</em>-substituted benzene rings in drug design. In this study, we report an intermolecular photocatalytic addition of [1.1.1]propellane and <em>S</em>-(methyl-<em>d</em><sub>3</sub>) arylsulfonothioates to synthesize novel deuterium-containing BCPs derivatives <em>via</em> energy transfer processes (EnT). This efficient and green protocol provides an access to introduce deuterium into BCP scaffolds and enriches the present library of BCPs compounds for drug design.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114592"},"PeriodicalIF":3.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering an alcohol dehydrogenase from Gluconobacter oxydans for improved production of a bulky Ezetimibe intermediate 从氧葡萄糖杆菌中改造出一种醇脱氢酶,以改进大体积依折麦布中间体的生产
IF 3.9 2区 化学
Molecular Catalysis Pub Date : 2024-10-09 DOI: 10.1016/j.mcat.2024.114586
Yuqinxin Xie (谢雨沁欣), Dongzhi Wei (魏东芝), Jinping Lin (林金萍)
{"title":"Engineering an alcohol dehydrogenase from Gluconobacter oxydans for improved production of a bulky Ezetimibe intermediate","authors":"Yuqinxin Xie (谢雨沁欣),&nbsp;Dongzhi Wei (魏东芝),&nbsp;Jinping Lin (林金萍)","doi":"10.1016/j.mcat.2024.114586","DOIUrl":"10.1016/j.mcat.2024.114586","url":null,"abstract":"<div><div>(4<em>S</em>)-3-[(5<em>S</em>)-5-(4-fluorophenyl)-5‑hydroxy-valyl]-4-phenyl-1,3-oxazacyclopentane-2-one ((<em>S</em>)-Fop alcohol) is a key chiral intermediate for the synthesis of ezetimibe, and could be synthesized via asymmetric reduction of (<em>S</em>)-4-phenyl-3-[5-(4-fluorophenyl)-5-oxopentanoyl]-2-oxazolidione (Fop dione). However, discovering and engineering of ketoreductases toward bulky-bulky (diaryl) ketones is still challenging. Previously, we identified an alcohol dehydrogenase Gox0525 from <em>Gluconobacter oxydans</em> DSM2343 which possessed strict diastereoselectivity (<em>d.e.</em> value &gt; 99%) but low activity toward Fop dione. In this study, a semi-rational design based on the focused rational iterative site-specific mutagenesis (FRISM) based on site-directed saturation mutagenesis was performed to improve the catalytic efficiency of Gox0525. The variant M4 (Y92G/P93M/Y94P/L151V) shows a 64-fold enhanced catalytic efficiency (<em>K</em><sub>cat</sub>/<em>K</em><sub>m</sub>) and 47-fold in specific activity compared with the wild type Gox0525. Engineered <em>Escherichia coli</em> cells co-expressing the variant M4 and glucose dehydrogenase from <em>Bacillus subtilis</em> (BsGDH) for NADPH regeneration were employed as biocatalysts for gram-scale reaction of Fop dione. As a result,95 mM (33.76 g/L) Fop dione was completely transformed within 4 h, affording (<em>S</em>)-Fop alcohol with &gt; 99% <em>d.e.</em> value, the yield of 96%, and the space-time yield of 195.6 g/L/d.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114586"},"PeriodicalIF":3.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Illuminating tandem reactions characterized by temporal separation of catalytic activities via DFT calculations: A case study of Ni-catalyzed alkyne semi-hydrogenation 通过 DFT 计算阐明以催化活性的时间分离为特征的串联反应:镍催化炔烃半氢化案例研究
IF 3.9 2区 化学
Molecular Catalysis Pub Date : 2024-10-08 DOI: 10.1016/j.mcat.2024.114600
Yiying Yang , Xiaotai Wang , Dongju Zhang
{"title":"Illuminating tandem reactions characterized by temporal separation of catalytic activities via DFT calculations: A case study of Ni-catalyzed alkyne semi-hydrogenation","authors":"Yiying Yang ,&nbsp;Xiaotai Wang ,&nbsp;Dongju Zhang","doi":"10.1016/j.mcat.2024.114600","DOIUrl":"10.1016/j.mcat.2024.114600","url":null,"abstract":"<div><div>The concept of “temporal separation of catalytic activities” outlines a scenario where multiple transformations within a catalytic tandem reaction proceed sequentially over time without mutual interference. After presenting several examples of such reactions, we specifically focus on an example of the Ni-catalyzed alkyne <em>semi-</em>hydrogenation as a significant case study. By performing density functional theory (DFT) calculations, we illuminate the unique dynamic character of the reaction that the intermediate remains dormant until the reactant exhausted. The insights gained from the present calculations have led us to propose a comprehensive energy landscape model for the catalytic tandem reactions with temporal separation of catalytic activities, which offers a logical explanation for the temporal dormancy of the intermediate. This class of reactions is expected to be highly valuable as it presents the opportunity to fine-tune individual reaction steps, thereby introducing fresh concepts for precise control of reactions in one-pot chemistry.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114600"},"PeriodicalIF":3.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic amination of 1,6-hexanediol for synthesis of N, N, N’, N’-tetramethyl-1,6-hexanediamine over Cu/Ni/Zn catalysts 在铜/镍/锌催化剂上催化 1,6-己二醇胺化以合成 N,N,N',N'-四甲基-1,6-己二胺
IF 3.9 2区 化学
Molecular Catalysis Pub Date : 2024-10-08 DOI: 10.1016/j.mcat.2024.114601
Zhifei Wang , Jun Li , Yakui Wang , Hongbin Ju , Lu Zhang , Yajie Jiang
{"title":"Catalytic amination of 1,6-hexanediol for synthesis of N, N, N’, N’-tetramethyl-1,6-hexanediamine over Cu/Ni/Zn catalysts","authors":"Zhifei Wang ,&nbsp;Jun Li ,&nbsp;Yakui Wang ,&nbsp;Hongbin Ju ,&nbsp;Lu Zhang ,&nbsp;Yajie Jiang","doi":"10.1016/j.mcat.2024.114601","DOIUrl":"10.1016/j.mcat.2024.114601","url":null,"abstract":"<div><div>Synthesis of N, N, N’, N’-tetramethyl-1,6-hexanediamine(TMHDA) by the amination of 1,6-hexanediol(HDO) and dimethylamine(DMA) at normal pressure over an outstanding Cu/Ni/Zn catalyst supported on aluminum oxide(γ-Al<sub>2</sub>O<sub>3</sub>) was studied in this article. Cu/Ni/Zn/γ-Al<sub>2</sub>O<sub>3</sub>(Cu: Ni: Zn = 28: 7: 12) exhibited excellent catalytic performance, which HDO was almost completely transformed and TMHDA reached 85 % selectivity at 200 °C. The amination of HDO required two hydrogenations and two dehydrogenations, and the selectivity of the amination catalyst depended on the balance of dehydrogenation and hydrogenation. Various characterization (TEM, BET, XRD, H<sub>2</sub>-TPR, XPS) demonstrated that the addition of Zn to the Cu/Ni catalyst could reduce the agglomeration of Cu/Ni particles and change the valence distribution of Cu. The Cu/Ni/Zn/γ-Al<sub>2</sub>O<sub>3</sub> catalyst was a very promising and green method for the synthesis of tertiary diamines through amination of diols.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114601"},"PeriodicalIF":3.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical insight into the mechanism of Li-mediated nitrogen reduction reaction by density functional theory 通过密度泛函理论深入了解锂介导的氮还原反应机理
IF 3.9 2区 化学
Molecular Catalysis Pub Date : 2024-10-07 DOI: 10.1016/j.mcat.2024.114593
Ji Zhang , Aimin Yu , Dong-sheng Li , Chenghua Sun
{"title":"Theoretical insight into the mechanism of Li-mediated nitrogen reduction reaction by density functional theory","authors":"Ji Zhang ,&nbsp;Aimin Yu ,&nbsp;Dong-sheng Li ,&nbsp;Chenghua Sun","doi":"10.1016/j.mcat.2024.114593","DOIUrl":"10.1016/j.mcat.2024.114593","url":null,"abstract":"<div><div>Lithium-mediated electrochemical nitrogen reduction reaction (NRR) as an alternative to the Haber-Bosch process has attracted increasing attention because of its high faradaic efficiency and reproducibility. However, the limited understanding of the mechanism has hampered further improvement of its catalytic performance. This work has endeavored to study the process of Li-mediated NRR and its underlying mechanism using density functional theory. It is founded that the Li<sub>6</sub>N<sub>2</sub>, Li<sub>7</sub>N<sub>2</sub> atom groups, Li<sub>3</sub>N (001) and Li<sub>3</sub>N (110) layer stably exist on the deposited Li (001) layer. The replacing model has been established to describe the hydrogenation process with ethanol as a proton source, revealing that the replacement between Li and H atom is a spontaneously thermal process. Based on the replacing mechanism, the structure of interface and coverage rate of reactive sites are the two main factors that determine the ammonia formation. These findings further our understanding of Li-mediated NRR mechanism and will be helpful for the rational design of experiments of Li-mediated NRR.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114593"},"PeriodicalIF":3.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the factors influencing the ketoenamine-enolimine tautomeric equilibrium of pyridoxal 5′-phosphate in branched-chain aminotransferases 支链氨基转移酶中影响 5′-磷酸吡哆醛酮胺-烯醇亚胺同分异构平衡的因素探究
IF 3.9 2区 化学
Molecular Catalysis Pub Date : 2024-10-07 DOI: 10.1016/j.mcat.2024.114581
Xue Li , He Yu , Jiaqi Sun , Xiaoli Sun
{"title":"Exploring the factors influencing the ketoenamine-enolimine tautomeric equilibrium of pyridoxal 5′-phosphate in branched-chain aminotransferases","authors":"Xue Li ,&nbsp;He Yu ,&nbsp;Jiaqi Sun ,&nbsp;Xiaoli Sun","doi":"10.1016/j.mcat.2024.114581","DOIUrl":"10.1016/j.mcat.2024.114581","url":null,"abstract":"<div><div>Pyridoxal 5′-phosphate (PLP), the active form of vitamin B6, is a critical coenzyme for various enzymes. It generates a Schiff base with the substrate and exhibits ketoenamine and enolimine tautomeric forms due to intramolecular proton transfer. This study aims to ascertain the predominant tautomeric form of the PLP Schiff base in <em>Mt</em>IlvE and analyze its influencing factors. Molecular dynamics simulations indicate that the ketoenamine tautomer has higher binding free energy than the enolimine tautomer. Density functional theory calculations suggest that, despite their ability to interconvert at a relatively low energy barrier, the ketoenamine tautomer is thermodynamically more stable. Factors affecting the keto-enol tautomeric equilibrium were investigated by constructing various QM-cluster models. Our results demonstrate that both the protonation of the pyridine nitrogen and the presence of Tyr209, which stabilizes the O3 anion, shift the tautomeric equilibrium toward the ketoenamine configuration. These findings provide a theoretical basis for investigating enzyme catalytic mechanisms.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114581"},"PeriodicalIF":3.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One–pot A3–coupling solvent–free synthesis of propargylamines by Pd–impregnated Al–based LDHs synthesized from aluminum salt slag 用铝盐渣合成的钯浸渍铝基 LDH 单锅 A3 偶联无溶剂合成丙炔胺
IF 3.9 2区 化学
Molecular Catalysis Pub Date : 2024-10-05 DOI: 10.1016/j.mcat.2024.114594
Raihamol Erattammottil Thampikannu , Alejandro Jiménez , Vicente Rives , Miguel Ángel Vicente , Kannan Vellayan
{"title":"One–pot A3–coupling solvent–free synthesis of propargylamines by Pd–impregnated Al–based LDHs synthesized from aluminum salt slag","authors":"Raihamol Erattammottil Thampikannu ,&nbsp;Alejandro Jiménez ,&nbsp;Vicente Rives ,&nbsp;Miguel Ángel Vicente ,&nbsp;Kannan Vellayan","doi":"10.1016/j.mcat.2024.114594","DOIUrl":"10.1016/j.mcat.2024.114594","url":null,"abstract":"<div><div>Several Al<sup>3+</sup>–based LDHs with different divalent cations have been synthesized by coprecipitation from aluminum salt slag and have been impregnated with Pd. After their characterization by PXRD, FT–IR, thermal analysis, N<sub>2</sub> adsorption–desorption isotherms at –196 °C and electron microscopy (SEM and TEM), they were used as heterogeneous catalysts in the A<sup>3</sup>–coupling reaction (benzaldehyde + morpholine + phenylacetylene) to produce propargylamines. The catalyst that showed the best results was NiAl–Pd and the optimal reaction conditions were: catalyst dose 30 mg, temperature 80 °C and reaction time 6 h. In addition, this catalyst showed a good cyclic behavior, retaining a catalytic activity higher than 80 % after 4 cycles.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114594"},"PeriodicalIF":3.9,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective oxidation of styrene to valuable C7 or C8 aromatics via green photocatalysis with TiO2-based catalysts 利用基于 TiO2 的催化剂通过绿色光催化将苯乙烯选择性氧化为有价值的 C7 或 C8 芳烃
IF 3.9 2区 化学
Molecular Catalysis Pub Date : 2024-10-04 DOI: 10.1016/j.mcat.2024.114585
Yuzhen Hu , Zhenlong Song , Peng Zheng , Qi Zhang , Jianguo Liu
{"title":"Selective oxidation of styrene to valuable C7 or C8 aromatics via green photocatalysis with TiO2-based catalysts","authors":"Yuzhen Hu ,&nbsp;Zhenlong Song ,&nbsp;Peng Zheng ,&nbsp;Qi Zhang ,&nbsp;Jianguo Liu","doi":"10.1016/j.mcat.2024.114585","DOIUrl":"10.1016/j.mcat.2024.114585","url":null,"abstract":"<div><div>The selective oxidation of styrene at its side chains to yield value-added C<sub>7</sub> or C<sub>8</sub> aromatic compounds represents a crucial reaction within the chemical industry. However, achieving precise control over product formation selectivity poses a significant challenge. In this study, we demonstrate the effectiveness of ultra-small nanosized TiO<sub>2</sub>-based catalysts in facilitating the selective oxidation of styrene through a mild, eco-friendly photocatalytic approach. Following modification with 0.4% NiO, a notable transformation in product selectivity is observed. The primary products shift from C<sub>8</sub> with 96% selectivity to C<sub>7</sub> with 92% selectivity under UV, and even sunlight-type excitation. Detailed structural and electronic analyses reveal that the incorporation of NiO onto the TiO<sub>2</sub> surface induces the formation of a P-N heterojunction and additional active sites, crucial for promoting C-C cleavage, leading to a selectivity shift from C<sub>8</sub> to C<sub>7</sub> products. This research provides valuable insights into the design of simple TiO<sub>2</sub>-based catalysts capable of achieving high selectivity in the oxidation of styrene, highlighting the potential of green photocatalysis in industrial applications.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114585"},"PeriodicalIF":3.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxygen evolution over Fe1/NiSe2 single-atom electrocatalyst: The role of thermal-electrical cascade and surface reconstruing Fe1/NiSe2单原子电催化剂上的氧进化:热电级联和表面重构的作用
IF 3.9 2区 化学
Molecular Catalysis Pub Date : 2024-10-04 DOI: 10.1016/j.mcat.2024.114596
Ju Wang , Yusheng Liu , Zhaoxu Wang , Jia Wang , Wenyou Zhu , Wenchang Zhuang , Lin Tian
{"title":"Oxygen evolution over Fe1/NiSe2 single-atom electrocatalyst: The role of thermal-electrical cascade and surface reconstruing","authors":"Ju Wang ,&nbsp;Yusheng Liu ,&nbsp;Zhaoxu Wang ,&nbsp;Jia Wang ,&nbsp;Wenyou Zhu ,&nbsp;Wenchang Zhuang ,&nbsp;Lin Tian","doi":"10.1016/j.mcat.2024.114596","DOIUrl":"10.1016/j.mcat.2024.114596","url":null,"abstract":"<div><div>Oxygen evolution reaction (OER) in water electrolysis is a tough challenge. Here we report the thermally activated on-surface oxygen evolution at nickel diselenide under alkaline conditions, specifically focusing on the (101) and (100) facets supported with Fe single-atom electrocatalysts. Assisted by heat, the Fe<sub>1</sub>/NiSe<sub>2</sub>(101) and (100) facets demonstrate highly efficient activity for oxygen evolution at pH = 14. First-principles calculations and AIMD simulations illustrate excellent electrical conductivity and thermal stability of the Fe<sub>1</sub>/NiSe<sub>2</sub>(101) and (100) facets, as well as provide a promising understanding of electron transports among the oxygen-containing active species and the electrocatalysts during thermal-electrical cascade of OER under alkaline conditions. The enhanced OER performance depends on the co-adsorbate combinations: *O<sub>(Fe-Se</sub><sup>Ⅰ</sup><sub>)</sub>-*OH<sub>(Se</sub><sup>Ⅱ</sup><sub>)</sub> and *O<sub>(Fe-Se</sub><sup>Ⅰ</sup><sub>)</sub>-*OH<sub>(Ni)</sub> at the Fe<sub>1</sub>/NiSe<sub>2</sub>(101) facet, whose adsorption behaviors lead to self-activated surface reconstruing. Impressively, the affinity of the key intermediates at the potential-determining steps of OER: *O<sub>(Fe-Se</sub><sup>Ⅰ</sup><sub>)</sub> at the Fe<sub>1</sub>/NiSe<sub>2</sub>(101) facet, *O<sub>(Fe)</sub> and *OOH<sub>(Fe)</sub> at the Fe<sub>1</sub>/NiSe<sub>2</sub>(100) facet, is optimized by such self-activated surface reconstruing.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114596"},"PeriodicalIF":3.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信