过渡金属簇载结晶氮化碳析氢反应的理论研究

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Jing Kong , Yi Li , Yongfan Zhang , Wei Lin
{"title":"过渡金属簇载结晶氮化碳析氢反应的理论研究","authors":"Jing Kong ,&nbsp;Yi Li ,&nbsp;Yongfan Zhang ,&nbsp;Wei Lin","doi":"10.1016/j.mcat.2025.115257","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing the active sites upon single-atom catalysts is an optional strategy to increase the catalyst efficiency. In this study, the loading of three and four Group VIII and Group IB transition metal (TM) atoms on poly(triazine imide) (PTI) nanosheets was firstly explored. Meanwhile, comprehensive first-principles investigations were carried out to explore their structural stability, electronic properties, and catalytic performances in the context of the hydrogen evolution reaction (HER). Our results indicate that 11 catalysts are suitable candidates for HER applicability among the total 38 catalysts. Notably, the 4TM@H-PTI catalysts have more active sites than 3TM@H-PTI and show more effective electron transfer with the substrate. Consequently, the 4TM@H-PTI catalysts can be regarded as novel and highly prospective candidates for HER applications. The present work provides valuable insights and paves the way for the design of co-catalysts on PTI that are both low-cost and high-performance, potentially creating novel opportunities for progress within the realm of photocatalysis and sustainable energy.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"583 ","pages":"Article 115257"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical insight on transition metal cluster-loaded crystalline carbon nitride for hydrogen evolution reactions\",\"authors\":\"Jing Kong ,&nbsp;Yi Li ,&nbsp;Yongfan Zhang ,&nbsp;Wei Lin\",\"doi\":\"10.1016/j.mcat.2025.115257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Increasing the active sites upon single-atom catalysts is an optional strategy to increase the catalyst efficiency. In this study, the loading of three and four Group VIII and Group IB transition metal (TM) atoms on poly(triazine imide) (PTI) nanosheets was firstly explored. Meanwhile, comprehensive first-principles investigations were carried out to explore their structural stability, electronic properties, and catalytic performances in the context of the hydrogen evolution reaction (HER). Our results indicate that 11 catalysts are suitable candidates for HER applicability among the total 38 catalysts. Notably, the 4TM@H-PTI catalysts have more active sites than 3TM@H-PTI and show more effective electron transfer with the substrate. Consequently, the 4TM@H-PTI catalysts can be regarded as novel and highly prospective candidates for HER applications. The present work provides valuable insights and paves the way for the design of co-catalysts on PTI that are both low-cost and high-performance, potentially creating novel opportunities for progress within the realm of photocatalysis and sustainable energy.</div></div>\",\"PeriodicalId\":393,\"journal\":{\"name\":\"Molecular Catalysis\",\"volume\":\"583 \",\"pages\":\"Article 115257\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468823125004432\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823125004432","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

增加单原子催化剂的活性位是提高催化剂效率的一种可选策略。在这项研究中,首次探索了3个和4个第八族和IB族过渡金属(TM)原子在聚三嗪亚胺(PTI)纳米片上的负载。同时,对其结构稳定性、电子性质以及在析氢反应(HER)中的催化性能进行了全面的第一性原理研究。结果表明,在38种催化剂中,有11种催化剂适合HER的应用。值得注意的是,4TM@H-PTI催化剂比3TM@H-PTI具有更多的活性位点,并表现出更有效的电子与底物的转移。因此,4TM@H-PTI催化剂可被视为HER应用的新颖且极具前景的候选物。目前的工作提供了有价值的见解,并为设计低成本和高性能的PTI共催化剂铺平了道路,可能为光催化和可持续能源领域的进展创造新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical insight on transition metal cluster-loaded crystalline carbon nitride for hydrogen evolution reactions

Theoretical insight on transition metal cluster-loaded crystalline carbon nitride for hydrogen evolution reactions
Increasing the active sites upon single-atom catalysts is an optional strategy to increase the catalyst efficiency. In this study, the loading of three and four Group VIII and Group IB transition metal (TM) atoms on poly(triazine imide) (PTI) nanosheets was firstly explored. Meanwhile, comprehensive first-principles investigations were carried out to explore their structural stability, electronic properties, and catalytic performances in the context of the hydrogen evolution reaction (HER). Our results indicate that 11 catalysts are suitable candidates for HER applicability among the total 38 catalysts. Notably, the 4TM@H-PTI catalysts have more active sites than 3TM@H-PTI and show more effective electron transfer with the substrate. Consequently, the 4TM@H-PTI catalysts can be regarded as novel and highly prospective candidates for HER applications. The present work provides valuable insights and paves the way for the design of co-catalysts on PTI that are both low-cost and high-performance, potentially creating novel opportunities for progress within the realm of photocatalysis and sustainable energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信