2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)最新文献

筛选
英文 中文
The Difficulty of Recognizing Grasps from sEMG during Activities of Daily Living 日常生活活动中肌电图识别抓取的困难
Valentina Gregori, B. Caputo, A. Gijsberts
{"title":"The Difficulty of Recognizing Grasps from sEMG during Activities of Daily Living","authors":"Valentina Gregori, B. Caputo, A. Gijsberts","doi":"10.1109/BIOROB.2018.8487966","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487966","url":null,"abstract":"The application of machine learning to recognize hand movements from surface electromyography has led to promising academic results. Unfortunately, it has proven difficult to translate these results in better control methods for the end-users of upper-limb prostheses. Recent studies have pointed out that common offline performance metrics, such as classification accuracy, are not correlated with real controllability of the prosthesis. In this paper, we investigate the cause that learned models start to fail when applied outside the constrained laboratory setting. We performed several analyses at the hand of a dedicated data acquisition composed of a typical academic training session in the first phase and a set of activities of daily living in a home setting afterwards. Our analysis confirms that a model trained in the former setting performs poorly when applied in a home environment. The cause for this degradation is that the distribution of myoelectric data changes between both settings, thus violating the typical assumption in statistical learning theory that train and test data come from the same distribution. This problem persists even when adding data acquired in some home activities to classify others. Our result not only confirms the limited importance of offline performance metrics for real prosthesis usability, but also highlights the difficulties machine learning based approaches will need to overcome to become practically relevant.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123130427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Optimization-Based Analysis of a Cartwheel 基于优化的侧翻分析
Kevin Stein, K. Mombaur
{"title":"Optimization-Based Analysis of a Cartwheel","authors":"Kevin Stein, K. Mombaur","doi":"10.1109/BIOROB.2018.8488778","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8488778","url":null,"abstract":"The estimation of acting joint torques and ground reaction forces is of particular interest for the analysis and training of athletic human motions. Modern IMU-based motion capture systems can record the kinematics of motions without the constraint of a fixed capture volume but with a lower accuracy when compared to marker-based systems, however they can give no information about the underlying dynamics. We propose a general approach that allows us to analyze such motion recordings for which external ground reaction force measurements are not possible. To achieve this we use dynamically-consistent optimization to generate a physically valid least-squares fit of a dynamic model of the subject to the recorded motion. We demonstrate the method by fitting and analyzing a cartwheel motion. The resulting joint torques allow us to understand how the different joints are actuated throughout the motion and reconstructed contact forces give insight about the interaction with the environment. Calculation of the forces and torques are of great value during training of athletic motions both to improve technique and to prevent injury. Additionally we can estimate the deviation between the measurement and the physically valid fit.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114233209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Design and Evaluation of a Continuum Robot with Discreted link joints for Cardiovascular Interventions 一种用于心血管干预的离散关节连续机器人的设计与评价
Kiyoung Kim, H. Woo, Jungwook Suh
{"title":"Design and Evaluation of a Continuum Robot with Discreted link joints for Cardiovascular Interventions","authors":"Kiyoung Kim, H. Woo, Jungwook Suh","doi":"10.1109/BIOROB.2018.8487633","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487633","url":null,"abstract":"This paper deals with the design, modelling, fabrication, and experiments of a novel continuum robot that can be used for cardiovascular interventions. In this paper, a new design of bending joints of the continuum robot and its kinematical modelling are proposed. The bending joints of the proposed robot are designed to be easy to miniaturize and have a wide motion range. The continuum robot consists of an inner guide and an outer guide, each having two degrees of freedom (DOF). The 2DOF bending joints are driven by antagonistic actuation and the actuation part of the continuum robot is implemented to control the stiffness of the bending joints. When the pretensions of the cables of the bending joints are adjusted, the structural stiffness of the bending joints can be controlled. In this paper, the entire system of the continuum robot has been implemented and the basic performance of the proposed continuum robot has been verified. The proposed robot was confirmed to be bent actively in the S-shape curve.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"58 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120994069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
ExoBoot, a Soft Inflatable Robotic Boot to Assist Ankle During Walking: Design, Characterization and Preliminary Tests ExoBoot,一种柔软的充气机器人靴,在行走时帮助脚踝:设计,表征和初步测试
Jinwon Chung, Roman Heimgartner, Ciarán T. O’Neill, Nathan S. Phipps, C. Walsh
{"title":"ExoBoot, a Soft Inflatable Robotic Boot to Assist Ankle During Walking: Design, Characterization and Preliminary Tests","authors":"Jinwon Chung, Roman Heimgartner, Ciarán T. O’Neill, Nathan S. Phipps, C. Walsh","doi":"10.1109/BIOROB.2018.8487903","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487903","url":null,"abstract":"In this paper, we present the design and characterization of the ExoBoot, a soft inflatable robotic boot for assisting ankle plantarflexion during walking. The ExoBoot integrates a soft textile-based actuator and an IMU sensor into a textile boot, making it low-profile and lightweight. The inflatable actuator generates assistive plantarflexion torque when pressurized by bending on top of the boot. We characterize the torque generated by the ExoBoot at various pressures and ankle angles, achieving a maximum torque of 39 Nm at 483 kPa (70 psi) and 60 degrees ankle angle. In order to evaluate the performance of the ExoBoot during walking, a pilot study with one healthy subject was conducted. Actuation is triggered by an open loop pressure controller, based on the ankle angular velocity measured by an IMU, using high flow rate solenoid valves. At the peak of active assistance, pressure in the actuator reaches 75% of the supply pressure, and maximum torque applied on the ankle is estimated to be 23 Nm. These results demonstrate potential for the ExoBoot to reduce the metabolic cost of walking.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114284654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
Explosive Motions with Compliant Actuation Arrangements in Articulated Robots 铰接式机器人中柔性驱动装置的爆炸运动
R. Djajadiningrat, W. Roozing, N. Tsagarakis
{"title":"Explosive Motions with Compliant Actuation Arrangements in Articulated Robots","authors":"R. Djajadiningrat, W. Roozing, N. Tsagarakis","doi":"10.1109/BIOROB.2018.8487207","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487207","url":null,"abstract":"This paper presents the optimisation of explosive jumping motions on a 3-DoF leg prototype. The leg is based on the recently introduced asymmetric compliant actuator scheme, in which a series-elastic main drive is augmented with a parallel adjustable compliant branch with significantly different stiffness and energy storage capacity properties. The leg prototype implements two such actuation configurations, one of which includes a biarticulated branch, and they are compared to conventional series-elastic based actuation. An optimisation problem is formulated to optimise the joint trajectories and elastic element pretension to maximise jumping height. A simulation study demonstrates that the biarticulated configuration yields maximum jumping height, and that it achieves the highest peak joint power. Compared to series-elastic based actuation, the augmented leg jumps 4% higher with a monoarticulated parallel compliance configuration while using less energy, and over 10% higher in biarticulated configuration.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121869944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Hollow Pneumatic Artificial Muscles with Air Cylinder: Improvement for compatibility of high durability and high efficiency 带气缸的空心气动人造肌肉:提高了相容性,提高了耐用性和效率
Yasuyuki Yamada, A. Kojima, Yutaro Higashi, M. Okui, Taro Nakamura
{"title":"Hollow Pneumatic Artificial Muscles with Air Cylinder: Improvement for compatibility of high durability and high efficiency","authors":"Yasuyuki Yamada, A. Kojima, Yutaro Higashi, M. Okui, Taro Nakamura","doi":"10.1109/BIOROB.2018.8487219","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487219","url":null,"abstract":"Pneumatic soft actuators has been developed to improved characteristics, such as operating flexibility, low weight, and high output etc. However, the application range of these artificial muscles has been limited by their fragility, the size of pneumatic source and the system size required to control the position and force. Therefore, this research proposes hollow artificial muscles with air cylinder that is high durability and driven with less air. Furthermore, this actuator control both stiffness and displacement independently as single mechanical element.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"211 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133732482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Yaw Postural Perturbation Through Robotic Platform: Aging Effects on Muscle Synergies 通过机器人平台的偏航姿态扰动:衰老对肌肉协同作用的影响
Juri Taborri, Ilaria Mileti, Z. Prete, S. Rossi, E. Palermo
{"title":"Yaw Postural Perturbation Through Robotic Platform: Aging Effects on Muscle Synergies","authors":"Juri Taborri, Ilaria Mileti, Z. Prete, S. Rossi, E. Palermo","doi":"10.1109/BIOROB.2018.8488085","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8488085","url":null,"abstract":"Aging causes a worsening in muscle system, which could cause balance impairments, increasing the risk of falls. The study aims at evaluating the effects of aging on muscle activation in response to a yaw rotation imposed by the RotoBiT1D. Eight younger and eight older adults were enrolled in the study. A right sigmoidal rotation of 55° around the yaw axis was imposed to the subject by means of the RotoBiT1D platform in two velocity conditions, characterized by an angular velocity peak equal to 80¼/s and 100 °/s, respectively. The activations of 16 bilateral muscles of upper body were recorded through wireless surface electromyography. A Non-Negative Matrix Factorization was performed to extract the muscle synergies. The number of muscle synergies was selected by using the Variability Account For. The cosine of similarity was computed for the quantification of intra-group and inter-group similarity related to the muscle synergy vectors. The number of muscle synergies ranged from 4 to 6 in younger and from 3 to 6 in older, even though no statistical difference was found between groups or velocity conditions. As regards intra-group similarity, younger adults showed values always above the similarity threshold; while a lower similarity was observed in older adults, confirming the heterogeneity of postural response. The overall structure of muscle synergy vectors was not similar between groups and the inter-group similarity decreased with the increase of the velocity. The differences were greater in synergies involving head and upper limb muscles. Findings unveiled a different muscle synergy organization in terms of muscle synergy vectors. Such a different organization calls for a deeper investigation towards the aim of identifying causes of fall in elderly.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"30 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113987832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Intestinal Tattooing Mechanism Integrated with Active Wireless Capsule Endoscope 集成有源无线胶囊内窥镜的肠道纹身机制
M. Hoang, Viet Ha Le, Jayoung Kim, Eunpyo Choi, Byungjeon Kang, Jong-Oh Park, Chang-sei Kim
{"title":"Intestinal Tattooing Mechanism Integrated with Active Wireless Capsule Endoscope","authors":"M. Hoang, Viet Ha Le, Jayoung Kim, Eunpyo Choi, Byungjeon Kang, Jong-Oh Park, Chang-sei Kim","doi":"10.1109/BIOROB.2018.8487183","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487183","url":null,"abstract":"Recently, a wireless capsule endoscope with active locomotion has become an effective endoscopic method for diagnosis and treatment of diseases of gastrointestinal (GI) tract. Various modules such as biopsy and drug delivery were developed for the wireless capsule endoscope (WCE) to extend its application. In this paper, we present a marking module socalled tattooing module for WCE to localize the lesions and tumors in digestive organs before the laparoscopic surgery. The WCE with tattooing module is manipulated by an Electromagnetic Actuation (EMA) system, where a moderate magnetic field intensity is generated to drive the WCE reaching to a target of the digestive organs. The tattooing module is capable of stowing the needle inside the WCE's body to avoid pathway organs damage during locomotion and extruding to puncture the target for tattooing. The magnetic field is controlled to activate the micro-reed switch and triggers a chemical reaction that generates gas pressure. The produced gas increases the pressure in the propellant room and pushes the piston to eject the ink into the target. The prototype of the tattooing capsule endoscope is fabricated with dimension of 13 mm in diameter and 33 mm in length. The working principle and the mechanism of the tattooing module are suggested and the feasibility test with the prototype is demonstrated through in-vitro experiments.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115509584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Estimation of Phantom Limb Musculoskeletal Mechanics After Targeted Muscle Reinnervation: Towards Online Model-Based Control of Myoelectric Bionic Limbs* Resrach supported by ERC Advanced Grant DEMOVE (267888). 目标肌肉神经移植后幻肢肌肉骨骼力学的估计:基于模型的肌电仿生肢体在线控制*研究,ERC Advanced Grant DEMOVE(267888)。
Massimo Sartori, D. Farina
{"title":"Estimation of Phantom Limb Musculoskeletal Mechanics After Targeted Muscle Reinnervation: Towards Online Model-Based Control of Myoelectric Bionic Limbs* Resrach supported by ERC Advanced Grant DEMOVE (267888).","authors":"Massimo Sartori, D. Farina","doi":"10.1109/BIOROB.2018.8487191","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487191","url":null,"abstract":"Upper limb loss substantially impacts on the quality of life of thousands of individuals worldwide. Current advanced treatments rely on myoelectric prostheses controlled by electromyograms (EMG). Despite advances in surgical procedures (i.e. targeted muscle reinnervation) as well as in electrode design and bio-electric signal sampling, current myocontrol schemes provide limited re-gain of functionality and lack of bio-mimesis. Current solutions create mappings between EMG and prosthesis joint angles, disregarding the underlying neuromusculoskeletal processes. The poor performance of these approaches determines high rejection rates (40-50%) of myoelectric bionic limbs. This paper presents a biomimetic paradigm for active prosthesis control. It encompasses a modelling formulation that simulates the amputee's phantom limb musculoskeletal dynamics as controlled by high-density EMG-extracted neural activations to muscles. We demonstrate how this technique can be applied to a transhumeral amputee offline to decode musculoskeletal function in the phantom elbow and wrist offline. Moreover, we provide preliminary data showing how this technique can be operated online on intact-limbed individuals. The proposed paradigm represents an important step towards next-generation bionic limbs that can mimic human biological limb functionality and robustness.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114840064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Method for Quantifying Interaction Forces in Wearable Robots* 一种可穿戴机器人相互作用力的量化方法*
Anna-Maria Georgarakis, R. Stämpfli, P. Wolf, R. Riener, Jaime E. Duarte
{"title":"A Method for Quantifying Interaction Forces in Wearable Robots*","authors":"Anna-Maria Georgarakis, R. Stämpfli, P. Wolf, R. Riener, Jaime E. Duarte","doi":"10.1109/BIOROB.2018.8487701","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487701","url":null,"abstract":"Immobility due to movement impairments causes many secondary conditions that are a threat to a person's health and quality of life. Wearable robotic mobility aids such as exoskeletons and exosuits are a promising technique to tackle immobility. These devices are attached to the human with cuffs. However, the physical interaction at the human-robot interface is not yet well understood. Misplacement and compression of soft tissue diminish the efficiency of the robot and the comfort for the human. We developed a measurement method that allows us to simultaneously measure cuff interaction forces in normal and tangential direction. The measurement setup was validated in a friction test bench. The test-retest reliability was evaluated in an isolated attachment cuff mounted on a human forearm. Force measurements were repeatable, with error ranges up to 28.7% or 7.8 N in normal, 28.7% or 2.3 N in tangential direction. Our method is the first approach that simultaneously measures normal and tangential forces at the physical interface of wearable robots. The test-retest reliability is within the range of methods that assess only normal forces.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115116440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信