集成有源无线胶囊内窥镜的肠道纹身机制

M. Hoang, Viet Ha Le, Jayoung Kim, Eunpyo Choi, Byungjeon Kang, Jong-Oh Park, Chang-sei Kim
{"title":"集成有源无线胶囊内窥镜的肠道纹身机制","authors":"M. Hoang, Viet Ha Le, Jayoung Kim, Eunpyo Choi, Byungjeon Kang, Jong-Oh Park, Chang-sei Kim","doi":"10.1109/BIOROB.2018.8487183","DOIUrl":null,"url":null,"abstract":"Recently, a wireless capsule endoscope with active locomotion has become an effective endoscopic method for diagnosis and treatment of diseases of gastrointestinal (GI) tract. Various modules such as biopsy and drug delivery were developed for the wireless capsule endoscope (WCE) to extend its application. In this paper, we present a marking module socalled tattooing module for WCE to localize the lesions and tumors in digestive organs before the laparoscopic surgery. The WCE with tattooing module is manipulated by an Electromagnetic Actuation (EMA) system, where a moderate magnetic field intensity is generated to drive the WCE reaching to a target of the digestive organs. The tattooing module is capable of stowing the needle inside the WCE's body to avoid pathway organs damage during locomotion and extruding to puncture the target for tattooing. The magnetic field is controlled to activate the micro-reed switch and triggers a chemical reaction that generates gas pressure. The produced gas increases the pressure in the propellant room and pushes the piston to eject the ink into the target. The prototype of the tattooing capsule endoscope is fabricated with dimension of 13 mm in diameter and 33 mm in length. The working principle and the mechanism of the tattooing module are suggested and the feasibility test with the prototype is demonstrated through in-vitro experiments.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Intestinal Tattooing Mechanism Integrated with Active Wireless Capsule Endoscope\",\"authors\":\"M. Hoang, Viet Ha Le, Jayoung Kim, Eunpyo Choi, Byungjeon Kang, Jong-Oh Park, Chang-sei Kim\",\"doi\":\"10.1109/BIOROB.2018.8487183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a wireless capsule endoscope with active locomotion has become an effective endoscopic method for diagnosis and treatment of diseases of gastrointestinal (GI) tract. Various modules such as biopsy and drug delivery were developed for the wireless capsule endoscope (WCE) to extend its application. In this paper, we present a marking module socalled tattooing module for WCE to localize the lesions and tumors in digestive organs before the laparoscopic surgery. The WCE with tattooing module is manipulated by an Electromagnetic Actuation (EMA) system, where a moderate magnetic field intensity is generated to drive the WCE reaching to a target of the digestive organs. The tattooing module is capable of stowing the needle inside the WCE's body to avoid pathway organs damage during locomotion and extruding to puncture the target for tattooing. The magnetic field is controlled to activate the micro-reed switch and triggers a chemical reaction that generates gas pressure. The produced gas increases the pressure in the propellant room and pushes the piston to eject the ink into the target. The prototype of the tattooing capsule endoscope is fabricated with dimension of 13 mm in diameter and 33 mm in length. The working principle and the mechanism of the tattooing module are suggested and the feasibility test with the prototype is demonstrated through in-vitro experiments.\",\"PeriodicalId\":382522,\"journal\":{\"name\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2018.8487183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8487183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,具有主动运动功能的无线胶囊内窥镜已成为诊断和治疗胃肠道疾病的一种有效的内镜方法。为拓展无线胶囊内窥镜(WCE)的应用范围,开发了活检、给药等多种模块。在本文中,我们提出了一种用于WCE的标记模块,即纹身模块,用于在腹腔镜手术前定位消化器官的病变和肿瘤。带有纹身模块的WCE由电磁驱动(EMA)系统操纵,该系统产生中等强度的磁场,以驱动WCE到达消化器官的目标。刺青模块能够将针刺入WCE体内,避免运动过程中通路器官受损,并挤压刺穿目标进行刺青。磁场被控制以激活微簧片开关,并触发产生气体压力的化学反应。产生的气体增加推进剂室的压力并推动活塞将墨水喷射到目标中。制作了纹身胶囊内窥镜的原型,其直径为13mm,长度为33mm。提出了纹身模块的工作原理和工作机理,并通过体外实验验证了原型的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intestinal Tattooing Mechanism Integrated with Active Wireless Capsule Endoscope
Recently, a wireless capsule endoscope with active locomotion has become an effective endoscopic method for diagnosis and treatment of diseases of gastrointestinal (GI) tract. Various modules such as biopsy and drug delivery were developed for the wireless capsule endoscope (WCE) to extend its application. In this paper, we present a marking module socalled tattooing module for WCE to localize the lesions and tumors in digestive organs before the laparoscopic surgery. The WCE with tattooing module is manipulated by an Electromagnetic Actuation (EMA) system, where a moderate magnetic field intensity is generated to drive the WCE reaching to a target of the digestive organs. The tattooing module is capable of stowing the needle inside the WCE's body to avoid pathway organs damage during locomotion and extruding to puncture the target for tattooing. The magnetic field is controlled to activate the micro-reed switch and triggers a chemical reaction that generates gas pressure. The produced gas increases the pressure in the propellant room and pushes the piston to eject the ink into the target. The prototype of the tattooing capsule endoscope is fabricated with dimension of 13 mm in diameter and 33 mm in length. The working principle and the mechanism of the tattooing module are suggested and the feasibility test with the prototype is demonstrated through in-vitro experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信