带气缸的空心气动人造肌肉:提高了相容性,提高了耐用性和效率

Yasuyuki Yamada, A. Kojima, Yutaro Higashi, M. Okui, Taro Nakamura
{"title":"带气缸的空心气动人造肌肉:提高了相容性,提高了耐用性和效率","authors":"Yasuyuki Yamada, A. Kojima, Yutaro Higashi, M. Okui, Taro Nakamura","doi":"10.1109/BIOROB.2018.8487219","DOIUrl":null,"url":null,"abstract":"Pneumatic soft actuators has been developed to improved characteristics, such as operating flexibility, low weight, and high output etc. However, the application range of these artificial muscles has been limited by their fragility, the size of pneumatic source and the system size required to control the position and force. Therefore, this research proposes hollow artificial muscles with air cylinder that is high durability and driven with less air. Furthermore, this actuator control both stiffness and displacement independently as single mechanical element.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"211 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hollow Pneumatic Artificial Muscles with Air Cylinder: Improvement for compatibility of high durability and high efficiency\",\"authors\":\"Yasuyuki Yamada, A. Kojima, Yutaro Higashi, M. Okui, Taro Nakamura\",\"doi\":\"10.1109/BIOROB.2018.8487219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pneumatic soft actuators has been developed to improved characteristics, such as operating flexibility, low weight, and high output etc. However, the application range of these artificial muscles has been limited by their fragility, the size of pneumatic source and the system size required to control the position and force. Therefore, this research proposes hollow artificial muscles with air cylinder that is high durability and driven with less air. Furthermore, this actuator control both stiffness and displacement independently as single mechanical element.\",\"PeriodicalId\":382522,\"journal\":{\"name\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"volume\":\"211 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2018.8487219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8487219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

气动软执行器具有操作灵活、重量轻、输出量大等特点。然而,这些人造肌肉的应用范围受到其易碎性,气动源的大小和控制位置和力所需的系统尺寸的限制。因此,本研究提出了具有高耐久性和较少空气驱动的空心气缸人工肌肉。此外,该驱动器作为单个机械元件独立控制刚度和位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hollow Pneumatic Artificial Muscles with Air Cylinder: Improvement for compatibility of high durability and high efficiency
Pneumatic soft actuators has been developed to improved characteristics, such as operating flexibility, low weight, and high output etc. However, the application range of these artificial muscles has been limited by their fragility, the size of pneumatic source and the system size required to control the position and force. Therefore, this research proposes hollow artificial muscles with air cylinder that is high durability and driven with less air. Furthermore, this actuator control both stiffness and displacement independently as single mechanical element.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信