ExoBoot, a Soft Inflatable Robotic Boot to Assist Ankle During Walking: Design, Characterization and Preliminary Tests

Jinwon Chung, Roman Heimgartner, Ciarán T. O’Neill, Nathan S. Phipps, C. Walsh
{"title":"ExoBoot, a Soft Inflatable Robotic Boot to Assist Ankle During Walking: Design, Characterization and Preliminary Tests","authors":"Jinwon Chung, Roman Heimgartner, Ciarán T. O’Neill, Nathan S. Phipps, C. Walsh","doi":"10.1109/BIOROB.2018.8487903","DOIUrl":null,"url":null,"abstract":"In this paper, we present the design and characterization of the ExoBoot, a soft inflatable robotic boot for assisting ankle plantarflexion during walking. The ExoBoot integrates a soft textile-based actuator and an IMU sensor into a textile boot, making it low-profile and lightweight. The inflatable actuator generates assistive plantarflexion torque when pressurized by bending on top of the boot. We characterize the torque generated by the ExoBoot at various pressures and ankle angles, achieving a maximum torque of 39 Nm at 483 kPa (70 psi) and 60 degrees ankle angle. In order to evaluate the performance of the ExoBoot during walking, a pilot study with one healthy subject was conducted. Actuation is triggered by an open loop pressure controller, based on the ankle angular velocity measured by an IMU, using high flow rate solenoid valves. At the peak of active assistance, pressure in the actuator reaches 75% of the supply pressure, and maximum torque applied on the ankle is estimated to be 23 Nm. These results demonstrate potential for the ExoBoot to reduce the metabolic cost of walking.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8487903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

In this paper, we present the design and characterization of the ExoBoot, a soft inflatable robotic boot for assisting ankle plantarflexion during walking. The ExoBoot integrates a soft textile-based actuator and an IMU sensor into a textile boot, making it low-profile and lightweight. The inflatable actuator generates assistive plantarflexion torque when pressurized by bending on top of the boot. We characterize the torque generated by the ExoBoot at various pressures and ankle angles, achieving a maximum torque of 39 Nm at 483 kPa (70 psi) and 60 degrees ankle angle. In order to evaluate the performance of the ExoBoot during walking, a pilot study with one healthy subject was conducted. Actuation is triggered by an open loop pressure controller, based on the ankle angular velocity measured by an IMU, using high flow rate solenoid valves. At the peak of active assistance, pressure in the actuator reaches 75% of the supply pressure, and maximum torque applied on the ankle is estimated to be 23 Nm. These results demonstrate potential for the ExoBoot to reduce the metabolic cost of walking.
ExoBoot,一种柔软的充气机器人靴,在行走时帮助脚踝:设计,表征和初步测试
在本文中,我们介绍了ExoBoot的设计和特性,ExoBoot是一种柔软的充气机器人靴,用于在行走过程中帮助踝关节跖屈。ExoBoot将一个柔软的基于纺织品的致动器和一个IMU传感器集成到一个纺织靴子中,使其低调而轻便。充气致动器通过在靴子顶部弯曲加压时产生辅助跖屈扭矩。ExoBoot在不同压力和踝关节角度下产生的扭矩,在483 kPa (70 psi)和60度踝关节角度下,最大扭矩为39 Nm。为了评估ExoBoot在行走过程中的性能,对一名健康受试者进行了初步研究。驱动由开环压力控制器触发,基于IMU测量的踝关节角速度,使用高流量电磁阀。在主动辅助的高峰期,致动器的压力达到供给压力的75%,施加在脚踝上的最大扭矩估计为23牛米。这些结果证明了ExoBoot在降低步行代谢成本方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信