Manufacturing Letters最新文献

筛选
英文 中文
Investigations on ironing parameters in screw extrusion additive manufacturing (SEAM) 螺杆挤出增材制造(SEAM)中的熨烫参数研究
IF 1.9
Manufacturing Letters Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.102
Yash Gopal Mittal , Gopal Gote , Yogesh Patil , Avinash Kumar Mehta , Pushkar Kamble , K.P. Karunakaran
{"title":"Investigations on ironing parameters in screw extrusion additive manufacturing (SEAM)","authors":"Yash Gopal Mittal ,&nbsp;Gopal Gote ,&nbsp;Yogesh Patil ,&nbsp;Avinash Kumar Mehta ,&nbsp;Pushkar Kamble ,&nbsp;K.P. Karunakaran","doi":"10.1016/j.mfglet.2024.09.102","DOIUrl":"10.1016/j.mfglet.2024.09.102","url":null,"abstract":"<div><div><em>Additive Manufacturing</em> (AM) is a novel manufacturing process that enables the physical realization of a given 3D model via layered deposition. <em>Material extrusion</em> (MEX) is one of the most widely used forms of the various AM techniques, in which the <em>screw extrusion</em>-based AM (SEAM) processing offers the most versatile characteristics, in terms of material handling and flow rate capacities. It involves continuous extrusion of the semi-solid material via an extruder screw. Ironing is a common practice in MEX techniques, to maintain <em>z</em>-height and improve the surface morphologies while deposition. Most commercially used nozzles for MEX are thin-walled, such that the ratio of the nozzle width to the diameter (<em>w/d</em>) is close to 1. In this research, investigations on the ironing effect during screw extrusion-based material deposition are explored using a set of wider nozzles (<em>w/d</em> as high as 40). Special emphasis is laid on the deposited surface finish, interlayer strength, and geometrical conformance of the extrusion. The nozzle diameter and the <em>stand-off distance</em> (SOD) are also independently varied. It is found that the best dimensional stability is achieved when the SOD is set between 75 % and 100 % of the nozzle diameter. Ironing improved the surface finish and the interlayer strength in all instances, with an average improvement of 50 % and 200 %, respectively.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 822-831"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation and quantification of diffusion wear between cutting chip and workpiece using forging press 使用锻造压力机评估和量化切屑与工件之间的扩散磨损
IF 1.9
Manufacturing Letters Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.075
Junichi Nakagawa , Yusuke Yoshimi , Katsumasa Chiba , Ryutaro Tanaka
{"title":"Evaluation and quantification of diffusion wear between cutting chip and workpiece using forging press","authors":"Junichi Nakagawa ,&nbsp;Yusuke Yoshimi ,&nbsp;Katsumasa Chiba ,&nbsp;Ryutaro Tanaka","doi":"10.1016/j.mfglet.2024.09.075","DOIUrl":"10.1016/j.mfglet.2024.09.075","url":null,"abstract":"<div><div>The state of the interface between the workpiece and the cutting tool affects the cutting temperature and pressure on the tool surface during the cutting process. In particular, while cutting difficult-to-cut materials such as Ni-based alloy 718, the workpiece exhibits a high affinity for cutting tool materials and could easily adhere to them. Adhesion can, at times, adversely affect productivity. The diffusion between the cutting tool and the workpiece is a factor considered to contribute to the adhesion phenomenon during cutting. Addressing this issue involves choosing tool materials and coated materials with high resistance to diffusion and optimizing cutting conditions, particularly the cutting speed, which significantly impacts cutting temperature. However, because cutting tool wear comprises various forms, clarifying the effect of diffusion on tool wear remains open. In this study, to reproduce the diffusion phenomenon between cutting tool and workpiece, two pairs of test specimens were prepared: (1) cemented carbide-AISI 1045 and (2) cemented carbide-Alloy718, which could be held at high temperature under vacuum conditions by a forging press. The degree of diffusion phenomena was evaluated at each tool-work material interface, and the quantification of diffusion amount was performed by diffused element in each work material. Additionally, the theoretical analysis of the diffusion phenomenon using the thermodynamic and phase diagram calculation software Thermo-Calc was also performed.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 588-594"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of laser beam incident angle on welding of Ti6Al4V with fiber lasers 激光束入射角对使用光纤激光器焊接 Ti6Al4V 的影响
IF 1.9
Manufacturing Letters Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.057
Jigar Krushna Pathak, N. Ramesh Babu, D.S. Srinivasu
{"title":"Effect of laser beam incident angle on welding of Ti6Al4V with fiber lasers","authors":"Jigar Krushna Pathak,&nbsp;N. Ramesh Babu,&nbsp;D.S. Srinivasu","doi":"10.1016/j.mfglet.2024.09.057","DOIUrl":"10.1016/j.mfglet.2024.09.057","url":null,"abstract":"<div><div>Laser beam welding (LBW) is widely used for welding Ti6Al4V alloys in aerospace applications. LBW has localized high-energy fluence with low-energy input compared to other fusion welding processes, resulting in narrower heat-affected zones. On the other hand, most metals are highly reflective when the laser beam impinges perpendicular to the surface, making the process inefficient. Hence, this work proposes to employ shallow angle incidence to reduce the reflectivity during the welding of Ti6Al4V material. To explore the potential of this idea, the current study focuses on studying the effect of laser incident angle (15°-90°), power (300 W-1500 W), and feed rate (10 mm/s-25 mm/s) on autogenous weld bead geometry. For this purpose, bead-on plate (BOP) LBW is conducted on mill-annealed Ti6Al4V material of dimensions 25 mm × 25 mm × 3 mm by employing a fiber laser source with a maximum power of 3 kW and a wavelength of 1080 nm. It is observed from the results that at a normal incident angle and low laser power (&lt; 600 W), the penetration depth is too low to generate a weld bead. Analyzing the cross-section of the weld bead, obtained from SEM, perpendicular to the weld direction reveals that the increase in laser incident angle up to an optimal angle resulted in increased bead dimensions (width and height), and beyond that, the dimensions decreased. However, the optimal incident angle changed when the laser power was changed. The major finding of this study is that at 600 W and a normal incident angle, the laser could not penetrate and generate a weld bead due to low absorptivity, while at an incident angle of 30<sup>0</sup>, 45<sup>0</sup>, and 60<sup>0</sup>, weld beads are generated because of increased absorptivity. Similarly, the increase in weld dimensions with the increase in laser power is observed. At higher laser power, underfill and oxide formation are observed. The feed rate is less predominant than the incident angle and the power.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 469-474"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat partition evaluation during dry drilling of thick CFRP laminates with polycrystalline diamond drills 用多晶金刚石钻头干钻厚 CFRP 层压板时的热分区评估
IF 1.9
Manufacturing Letters Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.059
Fahim Shariar , Umut Karagüzel , Yiğit Karpat
{"title":"Heat partition evaluation during dry drilling of thick CFRP laminates with polycrystalline diamond drills","authors":"Fahim Shariar ,&nbsp;Umut Karagüzel ,&nbsp;Yiğit Karpat","doi":"10.1016/j.mfglet.2024.09.059","DOIUrl":"10.1016/j.mfglet.2024.09.059","url":null,"abstract":"<div><div>Since various material properties of carbon fiber-reinforced polymer (CFRP) are temperature dependent, dry drilling of CFRP is a delicate process. Thermal damage can be caused by a rise in temperature during drilling due to a large portion of heat being transferred into the material. Heat partition is used to quantify this, which represents the percentage of total heat being dissipated into the constituent objects during a machining operation. Drill margin and contact conditions at the tool-workpiece interface significantly affect the drilling of CFRP material. Drilling experiments were performed to measure thrust force, torque, and temperatures for five different sets of feed rates and rotational speeds. This study proposes a method for calculating heat partition values during CFRP drilling by developing a finite element-based thermal model. The FE model employs a Gaussian distributed ring-type heat flux that is a function of the equivalent contact length at the interface between the drill and the material surface and the geometry of the workpiece which operates as a moving heat source, emulating the progress of the drill through the CFRP laminate. The tool implements heat fluxes that use characteristic time-point-based step functions to represent the temperature on the drill as it advances through the workpiece during machining. The temperature profiles obtained from the FE analysis and the experiments for the workpiece and tool were subsequently matched iteratively to determine the corresponding heat partition value.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 483-493"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D melt blowing of Elastollan thermoplastic polyurethane for tissue engineering applications: A pilot study 用于组织工程应用的 Elastollan 热塑性聚氨酯三维熔体吹塑:试点研究
IF 1.9
Manufacturing Letters Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.043
Advay Pawar , Bruce Anderson , Behnam Pourdeyhimi , Amy L. McNulty , Matthew Fisher , Rohan Shirwaiker
{"title":"3D melt blowing of Elastollan thermoplastic polyurethane for tissue engineering applications: A pilot study","authors":"Advay Pawar ,&nbsp;Bruce Anderson ,&nbsp;Behnam Pourdeyhimi ,&nbsp;Amy L. McNulty ,&nbsp;Matthew Fisher ,&nbsp;Rohan Shirwaiker","doi":"10.1016/j.mfglet.2024.09.043","DOIUrl":"10.1016/j.mfglet.2024.09.043","url":null,"abstract":"<div><div>Scaffolds, in addition to being biocompatible, should possess structural and mechanical properties similar to the natural tissues they intend to replace. Many tissue engineering applications require porous 3D scaffolds characterized by unique microfibrous organization and mechanical anisotropy. Manufacturing process principles and process parameter-biomaterial interactions ultimately govern the properties that can be achieved in the scaffold. In this study, we investigate a recently developed nonwoven scaffold fabrication process, 3D melt blowing (3DMB), for processing Elastollan®, a thermoplastic polyurethane with basic mechanical properties suitable for musculoskeletal tissue engineering. The range of feasible processing parameters was screened and the effects of two sets of critical process parameters (fiber deposition offset and surface velocity of the collector) that produced contrasting scaffold morphologies were assessed. Results showed that scaffolds of Group B that were fabricated at the higher fiber deposition offset (90 %) and higher surface velocity of the collector (6 × 10<sup>5</sup> mm/min) possessed significantly smaller fiber diameter and higher porosity and degree of fiber alignment along the principal direction of collector rotation during 3DMB (all p &lt; 0.05) compared to Group A scaffolds (fabricated at 50 % offset and 1 × 10<sup>5</sup> mm/min surface velocity). Although both groups possessed similar tensile stiffness, the elongation at failure was significantly different (p &lt; 0.0001). The higher elongation at failure of Group B correlated with the higher degree of fiber alignment in these scaffolds. In contrast, the more isotropic fibrous organization of Group A contributed to their higher compressive stiffness (p = 0.004). The introduction of NaOH treatment to improve hydrophilicity of the scaffolds resulted in a significant reduction of tensile stiffness of Group A (p &lt; 0.05) but not Group B. This treatment did not significantly affect the elongation at failure or compressive stiffness of both groups. With NaOH-treatment, both groups demonstrated good biocompatibility when seeded with fibroblast cells over 14 days. This study confirms the ability to fabricate via 3DMB, biocompatible, micro-fibrous, Elastollan scaffolds relevant for musculoskeletal tissue engineering.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 357-363"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing interpretable and ensemble machine learning techniques for precision fabrication of aligned micro-fibers 利用可解释和集合机器学习技术精确制造对齐微纤维
IF 1.9
Manufacturing Letters Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.044
Imtiaz Qavi, George Tan
{"title":"Harnessing interpretable and ensemble machine learning techniques for precision fabrication of aligned micro-fibers","authors":"Imtiaz Qavi,&nbsp;George Tan","doi":"10.1016/j.mfglet.2024.09.044","DOIUrl":"10.1016/j.mfglet.2024.09.044","url":null,"abstract":"<div><div>Electrospinning is a robust technique for producing micro/nano-scale fibrous structures, influenced by intricate interplays of fluid dynamics, aerodynamics, and electromagnetic forces. Depending on the desired outcome, these fibers can adopt various morphologies, including solid, tubular, concentric, and gradient. Such morphologies are modulated by parameters such as collector configuration, flow rate, voltage, solution properties, and nozzle dimensions. However, the task of modeling and predicting these multifaceted morphologies remains complex. Aligned microfibers with 3D orientation hold promise in tissue engineering, regenerative medicine, and drug delivery, necessitating meticulous control over the fabrication parameters. In our research, we tapped into machine learning (ML) to address these challenges. Classification ML models were designed to predict fibrous patterns—aligned, random, or jet branching—based on determinants like voltage, flow rate, and collector configurations. Notably, the Random Forest (RF) and Support Vector Machine (SVM) models, especially with radial kernel-trick, displayed outstanding predictive capabilities on the test data. Furthermore, regression-based ML was harnessed to discern fiber alignment coherency and inter-fiber distances. Models such as Lasso and Ridge regression elucidated predictive coefficients for these characteristics, while ensemble models, like gradient-boosting (GB) decision trees (DT), showcased prowess in regression scenarios. Key findings spotlighted the significance of parameters like plate gap for alignment coherency and needle-to-collector distance for inter-fiber spacing. As we strive to gain granular control over micro/nano feature morphology in electrospinning, understanding predictor-response dynamics is imperative. Our investigation underscores the essential role of ML in enhancing both qualitative and quantitative precision in fabricating advanced fibrous structures. Moreover, fusing ML with real-time process monitoring offers groundbreaking potential, particularly in Bio-Fabrication, regenerative medicine, and tissue engineering, where high-precision manufacturing remains a top priority.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 364-374"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupled 3D non-orthogonal constitutive model for woven composites in preforming and compaction processes 预成型和压实过程中编织复合材料的三维非正交耦合结构模型
IF 1.9
Manufacturing Letters Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.049
Deyong Sun , Wanrui Zhang , Jianchao Zou , Yifeng Xiong , Chongrui Tang , Weizhao Zhang
{"title":"Coupled 3D non-orthogonal constitutive model for woven composites in preforming and compaction processes","authors":"Deyong Sun ,&nbsp;Wanrui Zhang ,&nbsp;Jianchao Zou ,&nbsp;Yifeng Xiong ,&nbsp;Chongrui Tang ,&nbsp;Weizhao Zhang","doi":"10.1016/j.mfglet.2024.09.049","DOIUrl":"10.1016/j.mfglet.2024.09.049","url":null,"abstract":"<div><div>Woven composites are considered promising for lightweight applications with great environmental and economic benefits. One of the most promising techniques for mass-production of woven composite parts with complex geometry is closed-mold thermoforming including preforming, compaction/consolidation and curing steps. The ignored effects on non-uniform thickness deformation and compaction modulus caused by preforming are considered in the coupled 3D non-orthogonal constitutive model to capture the coupled material behaviors during preforming and compaction. The in-plane tension, compression and shear modulus in the model are calibrated using tension, bending and bias-extension experiments, respectively. Meanwhile, the out-plane compaction experiments are designed, with high-accuracy measurement method for the initial thickness and deformation process, to obtain the material properties of sheared woven composites. These experiments can be regarded as one benchmark for compaction tests of woven composites. The new material model has been implemented in Abaqus software and validated by the bias-extension experiments.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 412-420"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data analytics for working performance analysis in production management 生产管理中用于工作绩效分析的数据分析
IF 1.9
Manufacturing Letters Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.011
Yuxin Wang, Yishu Yang, Ray Y. Zhong
{"title":"Data analytics for working performance analysis in production management","authors":"Yuxin Wang,&nbsp;Yishu Yang,&nbsp;Ray Y. Zhong","doi":"10.1016/j.mfglet.2024.09.011","DOIUrl":"10.1016/j.mfglet.2024.09.011","url":null,"abstract":"<div><div>RFID technology has found widespread application in supply chain processes. Previous research has primarily focused on managing products or stocks, with limited attention given to analysing workers’ performances through RFID data. This paper proposes a model for analysing employee performance using RFID data in production management. Key Performance Indicators (KPIs) are defined and utilised to process, analyse, and visualise the data through various analysis tools to develop the proposed model. Comparisons are conducted to evaluate employee performance between different groups based on the defined KPI. The model is validated by testing an independent data set, demonstrating its effectiveness in analysing existing data. Predictably, the model has the potential to reduce supervisory and associated costs in case-like applications.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 73-80"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mid-spatial frequency reduction via zero-depth of cut rapid-feed passes in face-turning 通过面车加工中的零切削深度快速进给通道降低中空间频率
IF 1.9
Manufacturing Letters Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.054
Aravind Shriram, Nithya Srimurugan, Sathyan Subbiah
{"title":"Mid-spatial frequency reduction via zero-depth of cut rapid-feed passes in face-turning","authors":"Aravind Shriram,&nbsp;Nithya Srimurugan,&nbsp;Sathyan Subbiah","doi":"10.1016/j.mfglet.2024.09.054","DOIUrl":"10.1016/j.mfglet.2024.09.054","url":null,"abstract":"<div><div>The single point diamond turning process (SPDT) is used widely in creating optical grade mirror surfaces on several engineering materials ranging from polymers, and metals, to brittle materials such as silicon and germanium. In visual optic mirror applications, mid-spatial frequency (MSF) errors generated during the SPDT process interfere with the visible spectrum of light thereby affecting the image quality. To overcome these errors, a post-processing operation of polishing the optical mirrors is required. The post-processing step not only increases the complexity of the manufacturing process but also leads to minor geometrical form changes in the mirror which affects performance. To avoid post-processing and minimize MSFs formed during turning- a novel method to modify the toolpath during the machining process has been proposed in this paper. The suggested toolpath strategy comprises two consecutive operations: i) employing variable low feed rates with the specified depth of cut (DoC) and ii) executing rapid traverse rates with zero depth of cut for a predetermined number of passes. The effectiveness of the proposed strategy is tested by carrying out facing experiments in a micro-precision CNC lathe. The power spectral density (PSD) content of the machined surface is then analyzed to check for any improvement in the frequency characteristics. The results show that the frequency errors generated by the toolpath in normal turning operations can be minimized, distributing the resulting PSD peak over a wide range of spatial frequencies. From the PSD plots, it is observed that there is a decrease of 77% and 85.82% in the peak intensity values when compared with surfaces machined at constant feedrates of 150 μm/rev and 200 μm/rev respectively. This method can be applied to nanoprecision SPDT machines to improve the surface quality and to eliminate the MSF errors of the visual optical grade mirrors without the need for post-processing.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 451-456"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal profile modeling and microstructural evolution in laser processing of Inconel 625 plates by comparison of analytical and numerical methods 通过比较分析和数值方法,建立因科镍合金 625 板材激光加工过程中的热曲线模型和微观结构演化
IF 1.9
Manufacturing Letters Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.091
Stephanie B. Lawson, Milad Ghayoor, Xianzhe Fu, Ali Tabei, Andy Fan, Somayeh Pasebani
{"title":"Thermal profile modeling and microstructural evolution in laser processing of Inconel 625 plates by comparison of analytical and numerical methods","authors":"Stephanie B. Lawson,&nbsp;Milad Ghayoor,&nbsp;Xianzhe Fu,&nbsp;Ali Tabei,&nbsp;Andy Fan,&nbsp;Somayeh Pasebani","doi":"10.1016/j.mfglet.2024.09.091","DOIUrl":"10.1016/j.mfglet.2024.09.091","url":null,"abstract":"<div><div>Microstructural evolution of materials under specified process conditions and parameters can be predicted by thermal modeling of additive manufacturing laser processes. The objective of this study was to develop, analyze and compare two methods for prediction: an analytical method and a numerical method for laser processing of Inconel 625 material. These methods were compared with experimental results for thermal profiling, and the effect of thermal profiles on microstructure of the experimental samples was explored. Maximum temperature and cooling rate of the numerical method were shown in good agreement, while the analytical method proved more challenging when compared to the experimental results for three laser parameters. Cooling curves were correlated with microstructure in terms of grain size, morphology, and orientation, with findings trending with parameter adjustments. This research supports the numerical modeling approach as a method for examining optimal laser processing conditions for Inconel 625 that is ideally suited for complex fluid flow analyses.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 730-741"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信