Austin Ngo , Noah Kohlhorst , Svitlana Fialkova , Bradley Jared , Tony Schmitz , Glenn Daehn , Jennifer L.W. Carter , Jian Cao , John J. Lewandowski
{"title":"Mechanical property improvements of LPBF-AlSi10Mg via forging to modify microstructure and defect characteristics","authors":"Austin Ngo , Noah Kohlhorst , Svitlana Fialkova , Bradley Jared , Tony Schmitz , Glenn Daehn , Jennifer L.W. Carter , Jian Cao , John J. Lewandowski","doi":"10.1016/j.mfglet.2024.09.072","DOIUrl":"10.1016/j.mfglet.2024.09.072","url":null,"abstract":"<div><div>Additive Manufacturing (AM) processes have versatile capabilities but are susceptible to the formation of as-cast non-equilibrium microstructures, process-induced defects, and porosity, which have deleterious effects on the mechanical performance. As part of our NSF-ERC-HAMMER program, isothermal forging was investigated as a novel post-processing technique for refining microstructure, reducing process defect severity, and thereby improving mechanical properties. Specimens of Laser Powderbed Fusion (LPBF) AlSi10Mg were fabricated over a range of process parameters and tensile tested as a baseline. Initial work focused on duplicate AM material that was then hot forged with 20 % strain to investigate the effects of isothermal forging at one temperature and strain rate on the microstructure, tensile, and fatigue properties of the as-deposited materials. The microstructures, process-induced defect populations, and tensile/fatigue properties of both as-deposited and forged materials were quantified and analysed by OM, EBSD, XCT, and SEM by various NSF-ERC-HAMMER team members. Isothermal hot forging was found to induce recrystallisation and modify process-induced defect geometry along with increasing tensile ductility. The effects of AM deposition parameters and forge post-processing conditions on LPBF AlSi10Mg will be discussed in terms of microstructure, mechanical properties, and fractography.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 568-574"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytical temperature model for spindle speed selection in additive friction stir deposition","authors":"Tony Schmitz , Elijah Charles , Brett Compton","doi":"10.1016/j.mfglet.2024.09.090","DOIUrl":"10.1016/j.mfglet.2024.09.090","url":null,"abstract":"<div><div>This paper describes a physics-based, analytical model for additive friction stir deposition (AFSD) spindle speed selection to achieve a desired deposition temperature. In the model, power input to the feedstock, which enables plastic flow and deposition, is related to the material temperature rise and subsequent flow stress reduction using Fourier’s conduction rate equation. Power input is modeled as frictional heating at the deposit-surface interface and adiabatic heating due to plastic deformation. The flow stress is predicted using the strain, strain rate, and temperature-dependent Johnson-Cook constitutive model for the selected feedstock alloy. Model predictions are compared to AFSD numerical simulation results available in the literature and experiments for aluminum alloys.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 720-729"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Avik Samanta , Hrishikesh Das , Glenn J. Grant , Saumyadeep Jana
{"title":"Friction stir processing: A thermomechanical processing tool for high pressure die cast Al-alloys for vehicle light-weighting","authors":"Avik Samanta , Hrishikesh Das , Glenn J. Grant , Saumyadeep Jana","doi":"10.1016/j.mfglet.2024.09.061","DOIUrl":"10.1016/j.mfglet.2024.09.061","url":null,"abstract":"<div><div>This study uses friction stir processing (FSP) for thermomechanical processing of high-pressure die-casting (HPDC) to modify microstructure and improve mechanical properties. FSP is carried out on two different HPDC aluminum alloys: (a) general-purpose, high-iron, HPDC A380 alloy and (b) premium quality, low-iron HPDC Aural-5 alloy in thin wall, flat plate geometry. Subsequent mechanical testing shows ∼30 % and ∼65 % enhancement in yield strength and tensile ductility. In addition, FSP leads to ∼10 times improvement in fatigue life for A380 alloy and ∼70 % improvement in fracture toughness for Aural-5 alloy. These findings emphasize the capability of FSP to modify the microstructure of HPDC Al-alloys-based structural components so that they can demonstrate a good combination of strength, ductility, fracture toughness, and high fatigue properties for long-term durability and reliability.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 504-512"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarower Kabir , Shah Rumman Ansary , Yunze Li , Meng Zhang , Weilong Cong
{"title":"Rotary ultrasonic surface machining of silicon: Effects of ultrasonic power and tool rotational speed","authors":"Sarower Kabir , Shah Rumman Ansary , Yunze Li , Meng Zhang , Weilong Cong","doi":"10.1016/j.mfglet.2024.09.063","DOIUrl":"10.1016/j.mfglet.2024.09.063","url":null,"abstract":"<div><div>The surging demand for monocrystalline silicon materials in the production of microelectronic components highlights its crucial role in the semiconductor and optic industries. Hence it is inevitable to produce a silicon workpiece with high quality finish to meet the demand in semiconductor industries. Due to high brittleness, controlling the quality of silicon in surface machining is quite difficult. Traditional manufacturing processes induce issues like rough surfaces and edge chipping. It was reported that rotary ultrasonic surface machining (RUSM) can effectively reduce cutting force, roughness, and edge chipping in machining of brittle materials. There have been several studies on drilling and sliding silicon materials using rotary ultrasonic machining investigating the effects of machining parameters on the output variables such as cutting force, torque, edge chipping, surface roughness etc. However, to the best of the authors’ knowledge, there are no reported investigations on effects of machining variables (ultrasonic power and tool rotation speed) in surface machining of silicon materials using the rotary ultrasonic machining. This study aimed to investigate the impacts of ultrasonic power and tool rotation speed on the cutting force, edge chipping, and surface roughness. Experimental results show that the ultrasonic vibration and tool rotation speed had a notable impact on edge chipping and cutting forces. Lastly, the current research has paved the way for widening the research on investigating grinding of the silicon wafer in semiconductor manufacturing with ultrasonic vibration and high rotation speed. In semiconductor wafer manufacturing, grinding process is used to reduce the flatness but generate surface and subsurface damage. With further investigations, RUSM can contribute to reducing these damages.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 518-525"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unsupervised detection and mapping of sparks in the Electrochemical Discharge Machining (ECDM) process","authors":"Prayag Gore, Yu-Jen Chen, Murali Sundaram","doi":"10.1016/j.mfglet.2024.09.052","DOIUrl":"10.1016/j.mfglet.2024.09.052","url":null,"abstract":"<div><div>Material removal in electrochemical discharge machining is caused by sparks generated in a tool immersed in an electrolytic solution. Being the primary machining agent in this non-contact machining process, mapping the locations of microscopic sparks is of great interest. The distribution of sparks around the tool surface could give insights into the machined hole properties like the size, surface finish, and depth as compared to the machining parameters such as applied voltage, tool size, rotation speed, and feed rate. This paper is focused on detecting sparks in photographs of the ECDM process captured using a high-speed camera. A novel approach of using a tri-planar reflective surface for capturing the location of sparks in 3D space using a 2D camera output is attempted. Traditional spark detection methods use neural network classifiers that need labeled data for training. This labeled data often comes from human intervention and contains inherent biases that could lead to misclassification. In this paper, an unsupervised spark detection methodology is demonstrated, which eliminates the need for human intervention and relies on the number of neighboring pixels detected in regions of interest (ROIs). The feasibility of using adaptive background modeling to classify thousands of images and identify the ones with sparks is demonstrated in this work. The masking technique combining effects of erosion followed by dilation is used to determine the exact boundaries of the spark contours in every image. Centroids for each of these contours are then transformed from the skewed coordinate system as observed in camera images, to a three-dimensional orthogonal coordinates system centered around the tool. The same procedure is repeated for various voltages to benchmark the distribution of sparks around a tool tip in an ECDM process.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 435-441"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lukas Kluy , Lina Klinge , Christopher Spiegel , Carsten Siemers , Peter Groche
{"title":"Design of thermomechanical processes for tailored microstructures","authors":"Lukas Kluy , Lina Klinge , Christopher Spiegel , Carsten Siemers , Peter Groche","doi":"10.1016/j.mfglet.2024.09.050","DOIUrl":"10.1016/j.mfglet.2024.09.050","url":null,"abstract":"<div><div>Thermomechanical processes enable tailoring of material properties and microstructures for advanced products. In medical technology, next-generation titanium implants require tailored material properties to improve health and quality of life. However, the interaction correlation between process parameters and material properties poses a major challenge for the design of thermomechanical manufacturing processes.</div><div>In this paper, we present a methodology for the design of thermomechanical processes to achieve tailored microstructural properties through forming technology and heat treatments. The methodology consists of five systematic steps to address the complexity of multiphysical coupling relationships between temperature, stress, microstructure and alloy composition, and to provide a guideline for effective implementation. It is applied to the production of nanostructured Ti-13Nb-13Zr (NanoTNZ) alloy for dental implants. The designed process of severe plastic deformation, recrystallization treatment and aging lead to nanostructured microstructures smaller than 200 nm. The resulting mechanical properties (UTS > 980 MPa, Young’s modulus of 73 GPa) meet the desired goals for improved biomedical implant-bone interactions. The tailored material properties and microstructures of NanoTNZ are therefore highly promising for use as an implant material.</div><div>The case study demonstrates the importance of a systematic method to manage the complexity of multiphysical coupling relationships in the design of thermomechanical processes to enable tailored microstructures for advanced materials and products.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 421-428"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hany Osman , Ahmed Azab , Rifat Bin Hasan , Fazle Baki
{"title":"Mass customization using hybrid manufacturing and smart assembly: An optimal configuration and platform design approach","authors":"Hany Osman , Ahmed Azab , Rifat Bin Hasan , Fazle Baki","doi":"10.1016/j.mfglet.2024.09.016","DOIUrl":"10.1016/j.mfglet.2024.09.016","url":null,"abstract":"<div><div>Hybrid Manufacturing (HM) and smart assembly stand as pivotal pillars in advanced smart manufacturing systems, offering manufacturers highly efficient and adaptable solutions for manufacturing. This paper delves into the configuration of a production line that integrates HM and assembly stages, each comprising multiple cells, with each cell housing one or more parallel stations. The objective is to manufacture a family of final assemblies, leveraging the platform concept to defer mass customization to later stages and thereby minimize processing costs. A mathematical programming model is proposed to identify the optimal configuration for such production lines, considering constraints such as an allowable capital cost and machine availabilities. In addition, the precedence, inclusion, and seclusion restrictions imposed on the part family are considered. The proposed mathematical programming model aims to delineate which HM features are processed in the part platform cell versus those processed in the mass customization (part variants) cells. Simultaneously, the model determines the components (variants from the HM stage) of final assemblies processed in the assembly platform cell, as well as components assembled or disassembled in the final assembly cells. Furthermore, the model seeks to determine the required number of stations in each cell to meet periodic demand. The overall objective of the model is to minimize the capital and the processing cost. A detailed case study illustrates the effectiveness of the proposed configuration approach and mathematical model. The proposed model is solvable in a few seconds by using commercial solvers.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 124-132"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Clinical-relevant sized tubular capillary mimicries by sacrificial core-sheath electrospinning","authors":"Yan Chen, Yingge Zhou","doi":"10.1016/j.mfglet.2024.09.056","DOIUrl":"10.1016/j.mfglet.2024.09.056","url":null,"abstract":"<div><div>Electrospinning is a versatile technique that is often used to fabricate ultra-fine fibers. With the help of a coaxial spinneret, microtubes can be fabricated as potential biomimetic capillary vessels. However, the sizes of electrospun microtubes in recent research were around 5 μm which is smaller to native capillary vessels (5–10 μm). The electrospun microtube diameter can be determined by various electrospinning parameters such as spinning materials, solvent, spinning distance, solution pump rate, applied voltage, etc. In this research, we explored the effects of spinning distance and core/sheath pump rate ratio on microtube diameter and wall thickness. Viscosity, wettability, and tensile tests were also conducted for microtube characterization. The results indicated that the microtube diameters range from 5 μm to 12 μm, which provides a promising direction for the fabrication of biomimetic capillary vessels.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 462-468"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaowei Yu , Mengyuan Chen , Ming Wang , Jennifer Bracey , Bradley Frieberg , Roland Koestner , Wai Ping Gloria Tam , David Titmuss , Nicholas Ware
{"title":"Effect of drying temperature on binder/current collector interfacial adhesion in electrode manufacturing of Li-ion batteries","authors":"Xiaowei Yu , Mengyuan Chen , Ming Wang , Jennifer Bracey , Bradley Frieberg , Roland Koestner , Wai Ping Gloria Tam , David Titmuss , Nicholas Ware","doi":"10.1016/j.mfglet.2024.09.036","DOIUrl":"10.1016/j.mfglet.2024.09.036","url":null,"abstract":"<div><div>Li-ion battery manufacturing process parameters are critical to the electrode properties and the final cell electrochemical performance. During the electrode drying process, the drying temperature plays a critical role on the binder migration, which affects the interfacial adhesion between the electrode and the current collector. However, the influence of the temperature on the properties of the binder material and the binder/current collector interface is yet unknown. In this work, we studied the effect of drying temperature on the interfacial adhesion between the binder and the current collector by direct coating of polyvinylidene fluoride (PVDF) solution on Al foil and then drying at various temperatures. The interfacial adhesion strength between the PVDF and the Al foil was significantly increased, from 9.72 N/m (dried at room temperature) to > 665.80 N/m (dried at 200 ℃) with increased temperature. DSC and XRD analyses showed the changes in the crystalline forms of PVDF under different drying temperature. This work revealed that the drying temperature during electrode manufacturing should be considered from the aspects of both binder migration in mid-stage and PVDF crystalline properties in late-stage solvent drying.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 304-309"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigations on ironing parameters in screw extrusion additive manufacturing (SEAM)","authors":"Yash Gopal Mittal , Gopal Gote , Yogesh Patil , Avinash Kumar Mehta , Pushkar Kamble , K.P. Karunakaran","doi":"10.1016/j.mfglet.2024.09.102","DOIUrl":"10.1016/j.mfglet.2024.09.102","url":null,"abstract":"<div><div><em>Additive Manufacturing</em> (AM) is a novel manufacturing process that enables the physical realization of a given 3D model via layered deposition. <em>Material extrusion</em> (MEX) is one of the most widely used forms of the various AM techniques, in which the <em>screw extrusion</em>-based AM (SEAM) processing offers the most versatile characteristics, in terms of material handling and flow rate capacities. It involves continuous extrusion of the semi-solid material via an extruder screw. Ironing is a common practice in MEX techniques, to maintain <em>z</em>-height and improve the surface morphologies while deposition. Most commercially used nozzles for MEX are thin-walled, such that the ratio of the nozzle width to the diameter (<em>w/d</em>) is close to 1. In this research, investigations on the ironing effect during screw extrusion-based material deposition are explored using a set of wider nozzles (<em>w/d</em> as high as 40). Special emphasis is laid on the deposited surface finish, interlayer strength, and geometrical conformance of the extrusion. The nozzle diameter and the <em>stand-off distance</em> (SOD) are also independently varied. It is found that the best dimensional stability is achieved when the SOD is set between 75 % and 100 % of the nozzle diameter. Ironing improved the surface finish and the interlayer strength in all instances, with an average improvement of 50 % and 200 %, respectively.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 822-831"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}