A novel gap flushing insert for sink electrical discharge machining

IF 1.9 Q3 ENGINEERING, MANUFACTURING
Samuel Mander, Philip Koshy
{"title":"A novel gap flushing insert for sink electrical discharge machining","authors":"Samuel Mander,&nbsp;Philip Koshy","doi":"10.1016/j.mfglet.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>Gap flushing in sink electrical discharge machining (EDM) is generally accomplished by forcing the dielectric fluid through a hole in the tool (through-tool flushing) or by periodically retracting the tool from the machining gap (jump EDM). Through-tool flushing is limited by the stump left on the workpiece from the flushing hole, and jump EDM by the reduced productivity from when the tool is not engaged in machining. In this context, this paper presents an innovation that involves a rotating flushing hole assembly incorporated within a prismatic tool, which can be self-propelled by the dielectric flow. The novel design is shown to essentially eliminate the formation of the said stump, and to correspond to removal rates surpassing jump EDM.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"43 ","pages":"Pages 55-59"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846325000021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Gap flushing in sink electrical discharge machining (EDM) is generally accomplished by forcing the dielectric fluid through a hole in the tool (through-tool flushing) or by periodically retracting the tool from the machining gap (jump EDM). Through-tool flushing is limited by the stump left on the workpiece from the flushing hole, and jump EDM by the reduced productivity from when the tool is not engaged in machining. In this context, this paper presents an innovation that involves a rotating flushing hole assembly incorporated within a prismatic tool, which can be self-propelled by the dielectric flow. The novel design is shown to essentially eliminate the formation of the said stump, and to correspond to removal rates surpassing jump EDM.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信