Internet Mathematics最新文献

筛选
英文 中文
Extracting the Core Structure of Social Networks Using (α, β)-Communities 利用(α, β)-社区提取社会网络核心结构
Internet Mathematics Pub Date : 2013-01-01 DOI: 10.1080/15427951.2012.678187
Liaoruo Wang, J. Hopcroft, Jing He, Hongyu Liang, Supasorn Suwajanakorn
{"title":"Extracting the Core Structure of Social Networks Using (α, β)-Communities","authors":"Liaoruo Wang, J. Hopcroft, Jing He, Hongyu Liang, Supasorn Suwajanakorn","doi":"10.1080/15427951.2012.678187","DOIUrl":"https://doi.org/10.1080/15427951.2012.678187","url":null,"abstract":"An (α, β)-community is a connected subgraph C with each vertex in C connected to at least β vertices of C (self-loops counted) and each vertex outside of C connected to at most α vertices of C (α<β). In this paper, we present a heuristic algorithm that in practice successfully finds a fundamental community structure. We also explore the structure of (α, β)-communities in various social networks. (α, β)-communities are well clustered into a small number of disjoint groups, and there are no isolated (α, β)-communities scattered between these groups. Two (α, β)-communities in the same group have significant overlap, while those in different groups have extremely small resemblance. A surprising core structure is discovered by taking the intersection of each group of massively overlapping (α, β)-communities. Further, similar experiments on random graphs demonstrate that the core structure found in many social networks is due to their underlying social structure, rather than to high-degree vertices or a particular degree distribution.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"9 1","pages":"58 - 81"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.678187","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59947172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
High-Order Random Walks and Generalized Laplacians on Hypergraphs 超图上的高阶随机漫步和广义拉普拉斯算子
Internet Mathematics Pub Date : 2013-01-01 DOI: 10.1080/15427951.2012.678151
Linyuan Lu, Xing Peng
{"title":"High-Order Random Walks and Generalized Laplacians on Hypergraphs","authors":"Linyuan Lu, Xing Peng","doi":"10.1080/15427951.2012.678151","DOIUrl":"https://doi.org/10.1080/15427951.2012.678151","url":null,"abstract":"Despite the extreme success of spectral graph theory, there are relatively few papers applying spectral analysis to hypergraphs. Chung first introduced Laplacians for regular hypergraphs and showed some useful applications. Other researchers have treated hypergraphs as weighted graphs and then studied the Laplacians of the corresponding weighted graphs. In this paper, we aim to unify these very different versions of Laplacians for hypergraphs. We introduce a set of Laplacians for hypergraphs through studying high-order random walks on hypergraphs. We prove that the eigenvalues of these Laplacians can effectively control the mixing rate of high-order random walks, the generalized distances/diameters, and the edge expansions.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"9 1","pages":"3 - 32"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.678151","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59946944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Discovery of Nodal Attributes through a Rank-Based Model of Network Structure 通过基于秩的网络结构模型发现节点属性
Internet Mathematics Pub Date : 2013-01-01 DOI: 10.1080/15427951.2012.678157
A. Henry, P. Prałat
{"title":"Discovery of Nodal Attributes through a Rank-Based Model of Network Structure","authors":"A. Henry, P. Prałat","doi":"10.1080/15427951.2012.678157","DOIUrl":"https://doi.org/10.1080/15427951.2012.678157","url":null,"abstract":"The structure of many real-world networks coevolves with the attributes of individual network nodes. Thus, in empirical settings, it is often necessary to observe link structures as well as nodal attributes; however, it is sometimes the case that link structures are readily observed, whereas nodal attributes are difficult to measure. This paper investigates whether it is possible to assume a model of how networks coevolve with nodal attributes, and then apply this model to infer unobserved nodal attributes based on a known network structure. We find that it is possible to do so in the context of a previously studied “rank” model of network structure, where nodal attributes are represented by externally determined ranks. In particular, we show that node ranks may be reliably estimated by examining node degree in conjunction with the average degree of first- and higher-order neighbors.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"9 1","pages":"33 - 57"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.678157","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59947032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Editorial Board EOV 编辑委员会EOV
Internet Mathematics Pub Date : 2012-12-01 DOI: 10.1080/15427951.2012.748407
{"title":"Editorial Board EOV","authors":"","doi":"10.1080/15427951.2012.748407","DOIUrl":"https://doi.org/10.1080/15427951.2012.748407","url":null,"abstract":"","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"154 2 1","pages":"ebi - ebi"},"PeriodicalIF":0.0,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.748407","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59947261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bistability through Triadic Closure 通过三元闭包实现双稳定性
Internet Mathematics Pub Date : 2012-12-01 DOI: 10.1080/15427951.2012.714718
P. Grindrod, D. Higham, Mark C. Parsons
{"title":"Bistability through Triadic Closure","authors":"P. Grindrod, D. Higham, Mark C. Parsons","doi":"10.1080/15427951.2012.714718","DOIUrl":"https://doi.org/10.1080/15427951.2012.714718","url":null,"abstract":"We propose and analyze a class of evolving network models suitable for describing a dynamic topological structure. Applications include telecommunication, online social behavior, and information processing in neuroscience. We model the evolving network as a discrete-time Markov chain and study a very general framework in which edges conditioned on the current state appear or disappear independently at the next time step. We show how to exploit symmetries in the microscopic, localized rules in order to obtain conjugate classes of random graphs that simplify analysis and calibration of a model. Further, we develop a mean field theory for describing network evolution. For a simple but realistic scenario incorporating the triadic closure effect that has been empirically observed by social scientists (friends of friends tend to become friends), the mean field theory predicts bistable dynamics, and computational results confirm this prediction. We also discuss the calibration issue for a set of real cellphone data, and find support for a block model in which individuals are assigned to one of two distinct groups having different within-group and across-group dynamics.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"60 1","pages":"402 - 423"},"PeriodicalIF":0.0,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.714718","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59947164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Balance in Random Signed Graphs 随机符号图中的平衡
Internet Mathematics Pub Date : 2012-12-01 DOI: 10.1080/15427951.2012.675413
A. E. Maftouhi, Y. Manoussakis, O. Megalakaki
{"title":"Balance in Random Signed Graphs","authors":"A. E. Maftouhi, Y. Manoussakis, O. Megalakaki","doi":"10.1080/15427951.2012.675413","DOIUrl":"https://doi.org/10.1080/15427951.2012.675413","url":null,"abstract":"By extending Heider’s and Cartwright–Harary’s theory of balance in deterministic social structures, we study the problem of balance in social structures in which relations among individuals are random. An appropriate model for representing such structures is that of random signed graphs G n,p,q , defined as follows. Given a set of n vertices and fixed numbers p and q, 0<p+q<1, then between each pair of vertices, there exists a positive edge, a negative edge, or no edge with respective probabilities p, q, 1−p−q. We first show that almost always (i.e., with probability tending to 1 as n→∞), the random signed graph G n,p,q is unbalanced. Subsequently we estimate the maximum order of a balanced induced subgraph in G n,p,p and show that its order achieves only a finite number of values. Next, we study the asymptotic behavior of the degree of balance and give upper and lower bounds for the line index of balance. Finally, we study the threshold function of balance, e.g., a function p 0(n) such that if p≫p 0(n), then the random signed graph G n,p,p is almost always unbalanced, and otherwise, it is almost always balanced.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"8 1","pages":"364 - 380"},"PeriodicalIF":0.0,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.675413","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59946861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Mean Commute Time for Random Walks on Hierarchical Scale-Free Networks 分层无标度网络随机行走的平均通勤时间
Internet Mathematics Pub Date : 2012-12-01 DOI: 10.1080/15427951.2012.685685
Y. Shang
{"title":"Mean Commute Time for Random Walks on Hierarchical Scale-Free Networks","authors":"Y. Shang","doi":"10.1080/15427951.2012.685685","DOIUrl":"https://doi.org/10.1080/15427951.2012.685685","url":null,"abstract":"In recent years, there has been a surge of research interest in networks with scale-free topologies, partly due to the fact that they are prevalent in scientific research and real-life applications. In this paper, we study random-walk issues on a family of two-parameter scale-free networks, called (x, y)-flowers. These networks, which are constructed in a deterministic recursive fashion, display rich behaviors such as the small-world phenomenon and pseudofractal properties. We derive analytically the mean commute times for random walks on (x, y)-flowers and show that the mean commute times scale with the network size as a power-law function with exponent governed by both parameters x and y. We also determine the mean effective resistance and demonstrate that it changes sharply between different choices of x and y. Furthermore, we compare mean commute times for (x, y)-flowers with those for Erdős–Rényi random graphs. Our theoretical results are verified by numerical studies.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"8 1","pages":"321 - 337"},"PeriodicalIF":0.0,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.685685","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59947044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Digraph Laplacian and the Degree of Asymmetry 有向图拉普拉斯算子与不对称度
Internet Mathematics Pub Date : 2012-12-01 DOI: 10.1080/15427951.2012.708890
Yanhua Li, Zhi-Li Zhang
{"title":"Digraph Laplacian and the Degree of Asymmetry","authors":"Yanhua Li, Zhi-Li Zhang","doi":"10.1080/15427951.2012.708890","DOIUrl":"https://doi.org/10.1080/15427951.2012.708890","url":null,"abstract":"In this paper we extend and generalize the standard spectral graph theory (or random-walk theory) on undirected graphs to digraphs. In particular, we introduce and define a normalized digraph Laplacian (Diplacian for short) Γ for digraphs, and prove that (1) its Moore–Penrose pseudoinverse is the discrete Green’s function of the Diplacian matrix as an operator on digraphs, and (2) it is the normalized fundamental matrix of the Markov chain governing random walks on digraphs. Using these results, we derive a new formula for computing hitting and commute times in terms of the Moore–Penrose pseudoinverse of the Diplacian, or equivalently, the singular values and vectors of the Diplacian. Furthermore, we show that the Cheeger constant defined in [Chung 05] is intrinsically a quantity associated with undirected graphs. This motivates us to introduce a metric, the largest singular value of the skewed Laplacian ∇=(Γ−Γ T )/2, to quantify and measure the degree of asymmetry in a digraph. Using this measure, we establish several new results, such as a tighter bound than that in [Chung 05] on the Markov chain mixing rate, and a bound on the second-smallest singular value of Γ.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"8 1","pages":"381 - 401"},"PeriodicalIF":0.0,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.708890","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59947114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 58
Approximations of the Generalized Inverse of the Graph Laplacian Matrix 图拉普拉斯矩阵广义逆的近似
Internet Mathematics Pub Date : 2012-12-01 DOI: 10.1080/15427951.2012.715115
E. Bozzo, Massimo Franceschet
{"title":"Approximations of the Generalized Inverse of the Graph Laplacian Matrix","authors":"E. Bozzo, Massimo Franceschet","doi":"10.1080/15427951.2012.715115","DOIUrl":"https://doi.org/10.1080/15427951.2012.715115","url":null,"abstract":"We devise methods for finding approximations of the generalized inverse of the graph Laplacian matrix, which arises in many graph-theoretic applications. Finding this matrix in its entirety involves solving a matrix inversion problem, which is resource-demanding in terms of consumed time and memory and hence impractical whenever the graph is relatively large. Our approximations use only a few eigenpairs of the Laplacian matrix and are parametric with respect to this number, so that the user can compromise between effectiveness and efficiency of the approximate solution. We apply the devised approximations to the problem of computing current-flow betweenness centrality on a graph. However, given the generality of the Laplacian matrix, many other applications can be sought. We experimentally demonstrate that the approximations are effective already with a constant number of eigenpairs. These few eigenpairs can be stored with a linear amount of memory in the number of nodes of the graph, and in the realistic case of sparse networks, they can be efficiently computed using one of the many methods for retrieving a few eigenpairs of sparse matrices that abound in the literature.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"8 1","pages":"456 - 481"},"PeriodicalIF":0.0,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.715115","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59947170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Model Selection for Social Networks Using Graphlets 使用Graphlets的社交网络模型选择
Internet Mathematics Pub Date : 2012-12-01 DOI: 10.1080/15427951.2012.671149
J. Janssen, Matt Hurshman, N. Kalyaniwalla
{"title":"Model Selection for Social Networks Using Graphlets","authors":"J. Janssen, Matt Hurshman, N. Kalyaniwalla","doi":"10.1080/15427951.2012.671149","DOIUrl":"https://doi.org/10.1080/15427951.2012.671149","url":null,"abstract":"Several network models have been proposed to explain the link structure observed in online social networks. This paper addresses the problem of choosing the model that best fits a given real-world network. We implement a model-selection method based on unsupervised learning. An alternating decision tree is trained using synthetic graphs generated according to each of the models under consideration. We use a broad array of features, with the aim of representing different structural aspects of the network. Features include the frequency counts of small subgraphs (graphlets) as well as features capturing the degree distribution and small-world property. Our method correctly classifies synthetic graphs, and is robust under perturbations of the graphs. We show that the graphlet counts alone are sufficient in separating the training data, indicating that graphlet counts are a good way of capturing network structure. We tested our approach on four Facebook graphs from various American universities. The models that best fit these data are those that are based on the principle of preferential attachment.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"8 1","pages":"338 - 363"},"PeriodicalIF":0.0,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.671149","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59947288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 54
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信