High-Order Random Walks and Generalized Laplacians on Hypergraphs

Q3 Mathematics
Linyuan Lu, Xing Peng
{"title":"High-Order Random Walks and Generalized Laplacians on Hypergraphs","authors":"Linyuan Lu, Xing Peng","doi":"10.1080/15427951.2012.678151","DOIUrl":null,"url":null,"abstract":"Despite the extreme success of spectral graph theory, there are relatively few papers applying spectral analysis to hypergraphs. Chung first introduced Laplacians for regular hypergraphs and showed some useful applications. Other researchers have treated hypergraphs as weighted graphs and then studied the Laplacians of the corresponding weighted graphs. In this paper, we aim to unify these very different versions of Laplacians for hypergraphs. We introduce a set of Laplacians for hypergraphs through studying high-order random walks on hypergraphs. We prove that the eigenvalues of these Laplacians can effectively control the mixing rate of high-order random walks, the generalized distances/diameters, and the edge expansions.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"9 1","pages":"3 - 32"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.678151","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2012.678151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

Abstract

Despite the extreme success of spectral graph theory, there are relatively few papers applying spectral analysis to hypergraphs. Chung first introduced Laplacians for regular hypergraphs and showed some useful applications. Other researchers have treated hypergraphs as weighted graphs and then studied the Laplacians of the corresponding weighted graphs. In this paper, we aim to unify these very different versions of Laplacians for hypergraphs. We introduce a set of Laplacians for hypergraphs through studying high-order random walks on hypergraphs. We prove that the eigenvalues of these Laplacians can effectively control the mixing rate of high-order random walks, the generalized distances/diameters, and the edge expansions.
超图上的高阶随机漫步和广义拉普拉斯算子
尽管谱图理论取得了极大的成功,但将谱分析应用于超图的论文相对较少。Chung首先介绍了正则超图的拉普拉斯算子,并展示了一些有用的应用。其他研究者将超图视为加权图,然后研究相应加权图的拉普拉斯算子。在本文中,我们的目标是统一这些非常不同版本的超图拉普拉斯算子。通过研究超图上的高阶随机游走,引入了一组超图的拉普拉斯算子。我们证明了这些拉普拉斯算子的特征值可以有效地控制高阶随机游动的混合率、广义距离/直径和边缘展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信