分层无标度网络随机行走的平均通勤时间

Q3 Mathematics
Y. Shang
{"title":"分层无标度网络随机行走的平均通勤时间","authors":"Y. Shang","doi":"10.1080/15427951.2012.685685","DOIUrl":null,"url":null,"abstract":"In recent years, there has been a surge of research interest in networks with scale-free topologies, partly due to the fact that they are prevalent in scientific research and real-life applications. In this paper, we study random-walk issues on a family of two-parameter scale-free networks, called (x, y)-flowers. These networks, which are constructed in a deterministic recursive fashion, display rich behaviors such as the small-world phenomenon and pseudofractal properties. We derive analytically the mean commute times for random walks on (x, y)-flowers and show that the mean commute times scale with the network size as a power-law function with exponent governed by both parameters x and y. We also determine the mean effective resistance and demonstrate that it changes sharply between different choices of x and y. Furthermore, we compare mean commute times for (x, y)-flowers with those for Erdős–Rényi random graphs. Our theoretical results are verified by numerical studies.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"8 1","pages":"321 - 337"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.685685","citationCount":"17","resultStr":"{\"title\":\"Mean Commute Time for Random Walks on Hierarchical Scale-Free Networks\",\"authors\":\"Y. Shang\",\"doi\":\"10.1080/15427951.2012.685685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, there has been a surge of research interest in networks with scale-free topologies, partly due to the fact that they are prevalent in scientific research and real-life applications. In this paper, we study random-walk issues on a family of two-parameter scale-free networks, called (x, y)-flowers. These networks, which are constructed in a deterministic recursive fashion, display rich behaviors such as the small-world phenomenon and pseudofractal properties. We derive analytically the mean commute times for random walks on (x, y)-flowers and show that the mean commute times scale with the network size as a power-law function with exponent governed by both parameters x and y. We also determine the mean effective resistance and demonstrate that it changes sharply between different choices of x and y. Furthermore, we compare mean commute times for (x, y)-flowers with those for Erdős–Rényi random graphs. Our theoretical results are verified by numerical studies.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":\"8 1\",\"pages\":\"321 - 337\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2012.685685\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2012.685685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2012.685685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 17

摘要

近年来,对无标度拓扑网络的研究兴趣激增,部分原因是它们在科学研究和现实应用中普遍存在。在本文中,我们研究了一类称为(x, y)-花的双参数无标度网络的随机漫步问题。这些网络以确定性递归的方式构建,表现出丰富的行为,如小世界现象和伪分形特性。我们解析地推导了(x, y)-花上随机行走的平均通勤时间,并表明平均通勤时间随网络规模的变化而变化,作为指数由参数x和y控制的幂律函数。我们还确定了平均有效阻力,并证明它在x和y的不同选择之间急剧变化。此外,我们比较了(x, y)-花的平均通勤时间与Erdős-Rényi随机图的平均通勤时间。我们的理论结果得到了数值研究的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean Commute Time for Random Walks on Hierarchical Scale-Free Networks
In recent years, there has been a surge of research interest in networks with scale-free topologies, partly due to the fact that they are prevalent in scientific research and real-life applications. In this paper, we study random-walk issues on a family of two-parameter scale-free networks, called (x, y)-flowers. These networks, which are constructed in a deterministic recursive fashion, display rich behaviors such as the small-world phenomenon and pseudofractal properties. We derive analytically the mean commute times for random walks on (x, y)-flowers and show that the mean commute times scale with the network size as a power-law function with exponent governed by both parameters x and y. We also determine the mean effective resistance and demonstrate that it changes sharply between different choices of x and y. Furthermore, we compare mean commute times for (x, y)-flowers with those for Erdős–Rényi random graphs. Our theoretical results are verified by numerical studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信