Digraph Laplacian and the Degree of Asymmetry

Q3 Mathematics
Yanhua Li, Zhi-Li Zhang
{"title":"Digraph Laplacian and the Degree of Asymmetry","authors":"Yanhua Li, Zhi-Li Zhang","doi":"10.1080/15427951.2012.708890","DOIUrl":null,"url":null,"abstract":"In this paper we extend and generalize the standard spectral graph theory (or random-walk theory) on undirected graphs to digraphs. In particular, we introduce and define a normalized digraph Laplacian (Diplacian for short) Γ for digraphs, and prove that (1) its Moore–Penrose pseudoinverse is the discrete Green’s function of the Diplacian matrix as an operator on digraphs, and (2) it is the normalized fundamental matrix of the Markov chain governing random walks on digraphs. Using these results, we derive a new formula for computing hitting and commute times in terms of the Moore–Penrose pseudoinverse of the Diplacian, or equivalently, the singular values and vectors of the Diplacian. Furthermore, we show that the Cheeger constant defined in [Chung 05] is intrinsically a quantity associated with undirected graphs. This motivates us to introduce a metric, the largest singular value of the skewed Laplacian ∇=(Γ−Γ T )/2, to quantify and measure the degree of asymmetry in a digraph. Using this measure, we establish several new results, such as a tighter bound than that in [Chung 05] on the Markov chain mixing rate, and a bound on the second-smallest singular value of Γ.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"8 1","pages":"381 - 401"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.708890","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2012.708890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 58

Abstract

In this paper we extend and generalize the standard spectral graph theory (or random-walk theory) on undirected graphs to digraphs. In particular, we introduce and define a normalized digraph Laplacian (Diplacian for short) Γ for digraphs, and prove that (1) its Moore–Penrose pseudoinverse is the discrete Green’s function of the Diplacian matrix as an operator on digraphs, and (2) it is the normalized fundamental matrix of the Markov chain governing random walks on digraphs. Using these results, we derive a new formula for computing hitting and commute times in terms of the Moore–Penrose pseudoinverse of the Diplacian, or equivalently, the singular values and vectors of the Diplacian. Furthermore, we show that the Cheeger constant defined in [Chung 05] is intrinsically a quantity associated with undirected graphs. This motivates us to introduce a metric, the largest singular value of the skewed Laplacian ∇=(Γ−Γ T )/2, to quantify and measure the degree of asymmetry in a digraph. Using this measure, we establish several new results, such as a tighter bound than that in [Chung 05] on the Markov chain mixing rate, and a bound on the second-smallest singular value of Γ.
有向图拉普拉斯算子与不对称度
本文将无向图的标准谱图理论(或随机游走理论)推广到有向图。特别地,我们引入并定义了一个有向图的归一化有向图拉普拉斯算子(Diplacian) Γ,并证明了(1)它的Moore-Penrose伪逆是作为有向图算子的Diplacian矩阵的离散Green函数,(2)它是控制有向图上随机游动的马尔可夫链的归一化基本矩阵。利用这些结果,我们导出了一个新的计算命中时间和通勤时间的公式,该公式用Diplacian的Moore-Penrose伪逆表示,或者等价地,用Diplacian的奇异值和向量表示。此外,我们证明了[Chung 05]中定义的Cheeger常数本质上是一个与无向图相关的量。这促使我们引入一个度量,即倾斜拉普拉斯算子∇的最大奇异值=(Γ−Γ T)/2,以量化和测量有向图中的不对称程度。利用这一测度,我们建立了几个新的结果,例如关于马尔可夫链混合率的一个比[Chung 05]更严格的界,以及关于Γ的第二小奇异值的一个界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信