{"title":"New Insights into the Mechanism of the UV/Sulfite Process: Formation of SO2•– Radicals and Their Derivatives under Acidic Conditions","authors":"Linghao Kong, Zhe Jin, Feng Zhu, Mengchang He, Feng Qian and Xianjia Peng*, ","doi":"10.1021/acs.estlett.4c00251","DOIUrl":"10.1021/acs.estlett.4c00251","url":null,"abstract":"<p >The UV/sulfite process shows great potential for reductively degrading or eliminating pollutants. While its mechanism in neutral and alkaline environments has been well-elucidated, the reaction pathway under acidic conditions remains unclear. Herein, we report the novel findings of the formation of reductive SO<sub>2</sub><sup>•–</sup> radicals and their derivatives in the UV/sulfite process at pH levels below 4. Mechanistic investigation revealed that H• radicals and SO<sub>3</sub><sup>•–</sup> radicals formed by the photolysis of sulfite under acidic conditions, with the H• radicals being scavenged by sulfite to produce SO<sub>2</sub><sup>•–</sup> radicals. Subsequently, these SO<sub>2</sub><sup>•–</sup> radicals are transformed into dithionite, thiosulfate, hydrogen sulfide, and elemental sulfur through a series of intricate reactions. This study is expected to expand the potential application of the UV/sulfite process under acid conditions.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"752–758"},"PeriodicalIF":8.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew S. Savoca*, Anna R. Robuck, Michaela A. Cashman, Mark G. Cantwell, Lindsay C. Agvent, David N. Wiley, Rachel Rice, Sean Todd, Nicole E. Hunter, Jooke Robbins, Jeremy A. Goldbogen and Rainer Lohmann,
{"title":"Whale Baleen To Monitor Per- and Polyfluoroalkyl Substances (PFAS) in Marine Environments","authors":"Matthew S. Savoca*, Anna R. Robuck, Michaela A. Cashman, Mark G. Cantwell, Lindsay C. Agvent, David N. Wiley, Rachel Rice, Sean Todd, Nicole E. Hunter, Jooke Robbins, Jeremy A. Goldbogen and Rainer Lohmann, ","doi":"10.1021/acs.estlett.4c0040910.1021/acs.estlett.4c00409","DOIUrl":"https://doi.org/10.1021/acs.estlett.4c00409https://doi.org/10.1021/acs.estlett.4c00409","url":null,"abstract":"<p >Per- and polyfluoroalkyl substances (PFAS) comprise >10 000 synthetic compounds that are globally distributed and highly persistent but remain challenging to monitor. Here we assess the utility of baleen─an accreting, keratinaceous tissue that baleen whales use for filter-feeding─to track PFAS dynamics in marine food webs. In six species investigated, PFAS were detected in all baleen tested (<i>n</i> = 18 plates, 220 samples, ∑<sub>10</sub>PFAS range of 0.02–60.5 ng/g of dry weight), at levels higher than those of other tissue types besides liver. Three of the species in our data set had not been tested for PFAS contamination previously, and two of those species (blue whale and North Atlantic right whale) are internationally endangered species. Apparent links were observed between PFAS and life-history events by testing successive subsamples along the growth axis of the baleen plates. These results establish baleen as a viable sample matrix for assessing PFAS contamination in marine ecosystems by enabling multiyear time-series analyses through single-tissue sampling with seasonal resolution.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 8","pages":"862–870 862–870"},"PeriodicalIF":8.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141973379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashley M. Lin, Jake T. Thompson, Jeremy P. Koelmel, Yalan Liu, John A. Bowden and Timothy G. Townsend*,
{"title":"Landfill Gas: A Major Pathway for Neutral Per- and Polyfluoroalkyl Substance (PFAS) Release","authors":"Ashley M. Lin, Jake T. Thompson, Jeremy P. Koelmel, Yalan Liu, John A. Bowden and Timothy G. Townsend*, ","doi":"10.1021/acs.estlett.4c00364","DOIUrl":"10.1021/acs.estlett.4c00364","url":null,"abstract":"<p >The undisclosed and ubiquitous use of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in consumer products has led to a growing issue of environmental pollution, particularly within the solid waste community, where the fate of volatile (neutral) PFAS in landfilled refuse is not well understood. Here, three municipal solid waste landfills in Florida were assessed for neutral PFAS in landfill gas and ionic PFAS in landfill leachate to compare the relative mobility between the two pathways. Landfill gas was directly sampled using a high volume, XAD-2 resin based sampling approach developed for adsorption and analysis of 27 neutral PFAS. Across sites, 13 neutral PFAS were identified from fluorotelomer alcohol (FTOH), fluorotelomer olefin (FTO), secondary FTOH, fluorotelomer acetate (FTOAc), and fluorotelomer methyl acrylate (FTMAc) classes; however, FTOHs dominated concentrations (87–97% total neutral PFAS), with most detections surpassing utilized calibration levels. Even under conservative assumptions, the mass of fluorine leaving in landfill gas (32–76%) was comparable to or greater than the mass leaving in landfill leachate (24–68%). These findings suggest that landfill gas, a less scrutinized byproduct, serves as a major pathway for the mobility of PFAS from landfills.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"730–737"},"PeriodicalIF":8.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ran Yin*, Xinyi Ruan, Jiadong Peng, Jing Zhao, Yuliang Zhang, Arnaud Heuzard and Chii Shang,
{"title":"Control of Micropollutants in Water by Far-UVC Photolysis of Peracetic Acid","authors":"Ran Yin*, Xinyi Ruan, Jiadong Peng, Jing Zhao, Yuliang Zhang, Arnaud Heuzard and Chii Shang, ","doi":"10.1021/acs.estlett.4c00384","DOIUrl":"10.1021/acs.estlett.4c00384","url":null,"abstract":"<p >Increasing radical yields to reduce energy consumption for micropollutant degradation would make advanced oxidation processes more sustainable in the context of the United Nations’ Sustainable Development Goals and carbon neutrality. We herein demonstrate that switching the UV radiation source from conventional low-pressure UV (UV<sub>254</sub>) to far-UVC (UV<sub>222</sub>) increases the UV fluence-based concentration of hydroxyl radicals (HO<sup>•</sup>) in the UV/peracetic acid (UV/PAA) process by 4.1-fold and 27.9-fold in deionized water and real surface water, respectively. Acetyloxyl radicals (CH<sub>3</sub>C(O)O<sup>•</sup>) are generated in the UV<sub>222</sub>/PAA process at a steady-state concentration of 2.4 × 10<sup>–12</sup> M in deionized water, while they are undetectable in the UV<sub>254</sub>/PAA process under the comparable conditions. The enhancement to radical production is mainly attributed to the 15.7-fold higher molar absorption coefficients of PAA<sup>0</sup> at 222 nm than 254 nm (50 vs 3.5 M<sup>–1</sup> cm<sup>–1</sup>), which suppresses the compromised 1.1-fold lower innate quantum yield at 222 nm than 254 nm (0.78 vs 0.86 mol einstein<sup>–1</sup>). The enhanced radical generation and direct photolysis promote the fluence-based degradation rate constants of bisphenol A, phenol, and nitrobenzene by 4.1-fold, 3.3-fold, and 2.9-fold in the UV<sub>222</sub>/PAA process than the UV<sub>254</sub>/PAA process.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"759–763"},"PeriodicalIF":8.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linsey C. Marr*, Zezhen Cheng, Weinan Leng, Swarup China and Aaron J. Prussin II,
{"title":"Response to Comment on “Size-Resolved Elemental Composition of Respiratory Particles in Three Healthy Subjects”","authors":"Linsey C. Marr*, Zezhen Cheng, Weinan Leng, Swarup China and Aaron J. Prussin II, ","doi":"10.1021/acs.estlett.4c00484","DOIUrl":"10.1021/acs.estlett.4c00484","url":null,"abstract":"","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"767–769"},"PeriodicalIF":8.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c00484","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comment on “Size-Resolved Elemental Composition of Respiratory Particles in Three Healthy Subjects”","authors":"Steven C. Hill*, and , David C. Doughty*, ","doi":"10.1021/acs.estlett.4c00243","DOIUrl":"10.1021/acs.estlett.4c00243","url":null,"abstract":"","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"765–766"},"PeriodicalIF":8.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Response to Comment on “Drinking Boiled Tap Water Reduces Human Intake of Nanoplastics and Microplastics”","authors":"Zimin Yu, Zhanjun Li* and Eddy Y. Zeng*, ","doi":"10.1021/acs.estlett.4c00475","DOIUrl":"10.1021/acs.estlett.4c00475","url":null,"abstract":"","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"764"},"PeriodicalIF":8.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanocluster Aerosols from Ozone–Human Chemistry Are Dominated by Squalene–Ozone Reactions","authors":"Shen Yang*, and , Dusan Licina, ","doi":"10.1021/acs.estlett.4c00289","DOIUrl":"10.1021/acs.estlett.4c00289","url":null,"abstract":"<p >Nanocluster aerosols (NCAs, <3 nm particles) are associated with climate feedbacks and potentially with human health. Our recent study revealed NCA formation owing to the reaction of ozone with human surfaces. However, the underlying mechanisms driving NCA emissions remain unexplored. Squalene is the most abundant compound in human skin lipids that reacts with ozone, followed by unsaturated fatty acids. This study aims to examine the contribution of the squalene–ozone reaction to NCA formation and the influence of ozone and ammonia (NH<sub>3</sub>) levels. In a climate-controlled chamber, we painted squalene and 6-hexadecenoic acid (C16:1n6) on glass plates to facilitate their reactions with ozone. The squalene–ozone reaction was further investigated at different ozone levels (15 and 90 ppb) and NH<sub>3</sub> levels (0 and 375 ppb). The results demonstrate that the ozonolysis of human skin lipid compounds contributes to NCA formation. With a typical squalene-C16:1n6 ratio found in human skin lipids (4:1), squalene generated 40 times more NCAs than did C16:1n6 and, thus, dominated NCA formation. More NCAs were generated with increased ozone levels, whereas increased NH<sub>3</sub> levels were associated with the stronger generation of larger NCAs but fewer of the smallest ones. This study experimentally confirms that NCAs are primarily formed from squalene–ozone reactions in ozone–human chemistry.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"716–722"},"PeriodicalIF":8.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c00289","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zijun Zhang, Weiqi Xu, Siqi Zeng, Yongchun Liu, Tengyu Liu, Yi Zhang, Aodong Du, Yan Li, Ning Zhang, Junfeng Wang, Eleonora Aruffo, Pengfei Han, Jie Li, Zifa Wang and Yele Sun*,
{"title":"Secondary Organic Aerosol Formation from Ambient Air in Summer in Urban Beijing: Contribution of S/IVOCs and Impacts of Heat Waves","authors":"Zijun Zhang, Weiqi Xu, Siqi Zeng, Yongchun Liu, Tengyu Liu, Yi Zhang, Aodong Du, Yan Li, Ning Zhang, Junfeng Wang, Eleonora Aruffo, Pengfei Han, Jie Li, Zifa Wang and Yele Sun*, ","doi":"10.1021/acs.estlett.4c00415","DOIUrl":"10.1021/acs.estlett.4c00415","url":null,"abstract":"<p >Semivolatile and intermediate volatility organic compounds (S/IVOCs) are known as crucial precursors of secondary organic aerosols (SOA), yet their specific contributions to SOA in urban areas remain unclear. Here, we investigate the real-time SOA formation from urban ambient air in summer in Beijing utilizing an oxidation flow reactor (OFR), coupled with aerosol and proton-transfer-reaction mass spectrometers. Our results show that the maximum photochemical formation of SOA in the OFR reached 2.9 μg m<sup>–3</sup> at ∼1.5 days of photochemical age. Primary OA and less oxidized oxygenated OA experience mass loss at high photochemical ages (>3 days) in the OFR, whereas more oxidized oxygenated OA continues to show mass enhancement, indicating the role of heterogeneous processes in the formation of highly aged SOA. Closure studies demonstrate that SOA estimated from the known precursors contribute 50.0 ± 17.3% of the measured SOA. The relatively low contribution (10.3 ± 5.2%) of IVOCs emphasizes the importance of unmeasured S/IVOCs in SOA formation. Furthermore, we illustrate the impact of heat waves on ambient SOA formation by enhancing photochemical oxidation and biogenic emissions in summer.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"738–745"},"PeriodicalIF":8.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennifer B. Dunn*, Kristen Greene, Eveline Vasquez-Arroyo, Muhammad Awais, Adriana Gomez-Sanabria, Page Kyle, Ruslana R. Palatnik, Roberto Schaeffer, Pengxiao Zhou, Baya Aissaoui and Enrica De Cian,
{"title":"Toward Enhancing Wastewater Treatment with Resource Recovery in Integrated Assessment and Computable General Equilibrium Models","authors":"Jennifer B. Dunn*, Kristen Greene, Eveline Vasquez-Arroyo, Muhammad Awais, Adriana Gomez-Sanabria, Page Kyle, Ruslana R. Palatnik, Roberto Schaeffer, Pengxiao Zhou, Baya Aissaoui and Enrica De Cian, ","doi":"10.1021/acs.estlett.4c00280","DOIUrl":"10.1021/acs.estlett.4c00280","url":null,"abstract":"<p >Sustainable water management is essential to increasing water availability and decreasing water pollution. The wastewater sector is expanding globally and beginning to incorporate technologies that recover nutrients from wastewater. Nutrient recovery increases energy consumption but may reduce the demand for nutrients from virgin sources. We estimate the increase in annual global energy consumption (1,100 million GJ) and greenhouse gas emissions (84 million t CO<sub>2</sub>e) for wastewater treatment in the year 2030 compared to today’s levels to meet sustainable development goals. To capture these trends, integrated assessment and computable general equilibrium models that address the energy-water nexus must evolve. We reviewed 16 of these models to assess how well they capture wastewater treatment plant energy consumption and GHG emissions. Only three models include biogas production from the wastewater organic content. Four explicitly represent energy demand for wastewater treatment, and eight include explicit representation of wastewater treatment plant greenhouse gas emissions. Of those eight models, six models quantify methane emissions from treatment, five include representation of emissions of nitrous oxide, and two include representation of emissions of carbon dioxide. Our review concludes with proposals to improve these models to better capture the energy-water nexus associated with the evolving wastewater treatment sector.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"654–663"},"PeriodicalIF":8.9,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c00280","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}