Neurobiology of Sleep and Circadian Rhythms最新文献

筛选
英文 中文
Circadian melatonin profile in opium and amphetamine dependent patients: A preliminary study 鸦片和安非他明依赖患者的昼夜褪黑激素特征:初步研究
Neurobiology of Sleep and Circadian Rhythms Pub Date : 2019-11-01 DOI: 10.1016/j.nbscr.2019.100046
Habibolah Khazaie MD , Hamid Reza Ahmadi MD , Amir Kiani PhD , Mohammad Rasoul Ghadami MD
{"title":"Circadian melatonin profile in opium and amphetamine dependent patients: A preliminary study","authors":"Habibolah Khazaie MD ,&nbsp;Hamid Reza Ahmadi MD ,&nbsp;Amir Kiani PhD ,&nbsp;Mohammad Rasoul Ghadami MD","doi":"10.1016/j.nbscr.2019.100046","DOIUrl":"10.1016/j.nbscr.2019.100046","url":null,"abstract":"<div><h3>Aim</h3><p>The aim of this study was to investigate the relationship between opium and amphetamine dependency with the serum melatonin levels in the presence of circadian rhythm sleep disorders (CRSD).</p></div><div><h3>Participants</h3><p>Forty four male amphetamine-dependent and opium-dependent patients with CRSD and with more than one year substance dependency were enrolled in this study. Control group consisted of twelve healthy male subjects.</p></div><div><h3>Design</h3><p>The diagnoses of sleep disorders were established by a psychiatrist and were made on the basis of the criteria of ICSD-II using the patients’ sleep logs. Blood samples were drawn every 4 h through an intravenous catheter. Serum melatonin levels were assayed using an enzyme-linked immunosorbent assay (ELISA) kit. Repeated Measures Analysis of variance (ANOVA) was used to assess differences between the melatonin levels at six separate times.</p></div><div><h3>Finding</h3><p>The serum melatonin levels of the control subjects were significantly higher than both opium-dependent and amphetamine-dependent patients at 24:00, 4:00 and 8:00. The serum melatonin level of the opium-dependent patients were significantly lower than the amphetamine-dependent patients at 24:00 (26.9 ± 11.4 vs. 41 ± 19.4, respectively; p = 0.006) and were significantly higher than the amphetamine-dependent patients at 16:00 (12.7 ± 5.1 vs. 8.9 ± 4.1, respectively; p = 0.011).</p></div><div><h3>Conclusion</h3><p>This is an evidence of negative effects of substance dependence on circadian cycle of melatonin secretion among opium and amphetamine dependent patients.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2019.100046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43443040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Melatonin profiles during the third trimester of pregnancy and health status in the offspring among day and night workers: A case series 在妊娠晚期褪黑素谱和后代的健康状况在白班和夜班工人:一个案例系列
Neurobiology of Sleep and Circadian Rhythms Pub Date : 2019-01-01 DOI: 10.1016/j.nbscr.2019.04.001
P.A. Nehme , F.G. Amaral , B. Middleton , A. Lowden , E. Marqueze , I. França-Junior , J.L.F. Antunes , J. Cipolla-Neto , D.J. Skene , C.R.C. Moreno
{"title":"Melatonin profiles during the third trimester of pregnancy and health status in the offspring among day and night workers: A case series","authors":"P.A. Nehme ,&nbsp;F.G. Amaral ,&nbsp;B. Middleton ,&nbsp;A. Lowden ,&nbsp;E. Marqueze ,&nbsp;I. França-Junior ,&nbsp;J.L.F. Antunes ,&nbsp;J. Cipolla-Neto ,&nbsp;D.J. Skene ,&nbsp;C.R.C. Moreno","doi":"10.1016/j.nbscr.2019.04.001","DOIUrl":"10.1016/j.nbscr.2019.04.001","url":null,"abstract":"<div><p>Successful pregnancy requires adaptation in maternal physiology. During intrauterine life the mother's circadian timing system supports successful birth and postnatal development. Maternal melatonin is important to transmit circadian timing and day length to the fetus. This study aims to describe the third trimester of pregnancy among day (n = 5) and night (n = 3) workers by assessing their melatonin levels in a natural environment. Additionally, we describe the worker's metabolic profiles and compare the health status of the newborns between groups of day and night working mothers. Our results indicate an occurrence of assisted delivery (cesarean and forceps) among night workers. Moreover, the newborns of night workers showed lower Apgar index and breastfeeding difficulty indicating a worse condition to deal with the immediate outside the womb environment. Additionally, there was lower night-time melatonin production among pregnant night workers compared to day workers. These findings may be related to light-induced suppression of melatonin that occurs during night work. We conclude that night work and consequent exposure to light at unconventional times might compromise the success of pregnancy and the health of the newborn. Further studies need to be carried out to monitor pregnancy and newborn health in pregnant night workers.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2019.04.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37362396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Comparison of the macro and microstructure of sleep in a sample of sleep clinic hypersomnia cases 临床一例睡眠嗜睡症患者睡眠宏观与微观结构的比较
Neurobiology of Sleep and Circadian Rhythms Pub Date : 2019-01-01 DOI: 10.1016/j.nbscr.2019.02.001
Alyssa Cairns , Richard Bogan
{"title":"Comparison of the macro and microstructure of sleep in a sample of sleep clinic hypersomnia cases","authors":"Alyssa Cairns ,&nbsp;Richard Bogan","doi":"10.1016/j.nbscr.2019.02.001","DOIUrl":"10.1016/j.nbscr.2019.02.001","url":null,"abstract":"<div><p>The purpose of this study was to elucidate the differentiating or grouping EEG characteristics in various hypersomnias (type 1 and type 2 narcolepsy (N-1 and N-2) and idiopathic hypersomnia (IH) compared to an age-matched snoring reference group (SR). Polysomnogram sleep EEG was decomposed into a 4-frequency state model. The IH group had higher sleep efficiency (SE; 92.3% vs. 85.8%; sp &lt; 0.05), lower WASO (IH = 35.4 vs. N-1 = 65.5 min; p &lt; 0.01), but similar (i.e. high) arousal indices as N-1 (~33/h). N-1 and N-2 had earlier REM latency than IH and SR (N-1 = 64.8, N-2 = 76.3 vs. IH/SR = 118 min, p &lt; 0.05). N-1 and N-2 showed an increase in MF1 segments (characteristic of stage 1 and REM) across the night as well as distinct oscillations every 2 h, but MF1 segment timing was advanced by 30 min compared to the SR group (p &lt; 0.05). This suggests the presence of circadian organization to sleep that is timed earlier or of increased pressure and/or lability. MF1 demonstrated a mixed phenotype in IH, with an early 1<sup>st</sup> oscillation (like N-1 and N-2), 2<sup>nd</sup> oscillation that overlapped with the SR group, and a surge prior to wake (higher than all groups). This phenotype may reflect a heterogeneous group of individuals, with some having more narcolepsy-like characteristics (i.e. REM) than others. LF domain (delta surrogate) was enhanced in IH and N-1 and more rapidly dissipated compared to N-2 and SR (p &lt; 0.05). This suggests an intact homeostatic sleep pattern that is of higher need/reduced efficiency whereas rapid dissipation may be an underlying mechanism for sleep disruption.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2019.02.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37359314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Brain dynamics during the sleep onset transition: An EEG source localization study 睡眠开始过渡期间的脑动力学:脑电图源定位研究
Neurobiology of Sleep and Circadian Rhythms Pub Date : 2019-01-01 DOI: 10.1016/j.nbscr.2018.11.001
Antonio Fernandez Guerrero , Peter Achermann
{"title":"Brain dynamics during the sleep onset transition: An EEG source localization study","authors":"Antonio Fernandez Guerrero ,&nbsp;Peter Achermann","doi":"10.1016/j.nbscr.2018.11.001","DOIUrl":"10.1016/j.nbscr.2018.11.001","url":null,"abstract":"<div><p>EEG source localization is an essential tool to reveal the cortical sources underlying brain oscillatory activity. We applied LORETA, a technique of EEG source localization, to identify the principal brain areas involved in the process of falling asleep (sleep onset, SO). We localized the contributing brain areas of activity in the classical frequency bands and tracked their temporal evolution (in 2-min intervals from 2 min prior to SO up to 10 min after SO) during a baseline night and subsequent recovery sleep after total sleep deprivation of 40 h.</p><p>Delta activity (0.5–5 Hz) gradually increased both in baseline and recovery sleep, starting in frontal areas and finally involving the entire cortex. This increase was steeper in the recovery condition. The evolution of sigma activity (12–16 Hz) resembled an inverted U-shape in both conditions and the activity was most salient in the parietal cortex. In recovery, sigma activity reached its maximum faster than in baseline, but attained lower levels. Theta activity (5–8 Hz) increased with time in large parts of the occipital lobe (baseline and recovery) and in recovery involved additionally frontal areas. Changes in alpha activity (8–12 Hz) at sleep onset involved large areas of the cortex, whereas activity in the beta range (16–24 Hz) was restricted to small cortical areas. The dynamics in recovery could be considered as a “fast-forward version” of the one in baseline.</p><p>Our results confirm that the process of falling asleep is neither spatially nor temporally a uniform process and that different brain areas might be falling asleep at a different speed potentially reflecting use dependent aspects of sleep regulation.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2018.11.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37359313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Electrophysiological characterization of sleep/wake, activity and the response to caffeine in adult cynomolgus macaques 成年食蟹猕猴睡眠/觉醒、活动和咖啡因反应的电生理特征
Neurobiology of Sleep and Circadian Rhythms Pub Date : 2019-01-01 DOI: 10.1016/j.nbscr.2018.08.001
Anushka V. Goonawardena, Stephen R. Morairty, Gabriel A. Orellana, Adrian R. Willoughby , Tanya L. Wallace , Thomas S. Kilduff
{"title":"Electrophysiological characterization of sleep/wake, activity and the response to caffeine in adult cynomolgus macaques","authors":"Anushka V. Goonawardena,&nbsp;Stephen R. Morairty,&nbsp;Gabriel A. Orellana,&nbsp;Adrian R. Willoughby ,&nbsp;Tanya L. Wallace ,&nbsp;Thomas S. Kilduff","doi":"10.1016/j.nbscr.2018.08.001","DOIUrl":"10.1016/j.nbscr.2018.08.001","url":null,"abstract":"<div><p>Most preclinical sleep studies are conducted in nocturnal rodents that have fragmented sleep in comparison to humans who are primarily diurnal, typically with a consolidated sleep period. Consequently, we sought to define basal sleep characteristics, sleep/wake architecture and electroencephalographic (EEG) activity in a diurnal non-human primate (NHP) to evaluate the utility of this species for pharmacological manipulation of the sleep/wake cycle. Adult, 9–11 y.o. male cynomolgus macaques (<em>n</em> = 6) were implanted with telemetry transmitters to record EEG and electromyogram (EMG) activity and Acticals to assess locomotor activity under baseline conditions and following injections either with vehicle or the caffeine (CAF; 10 mg/kg, i.m.) prior to the 12 h dark phase. EEG/EMG recordings (12–36 h in duration) were analyzed for sleep/wake states and EEG spectral composition. Macaques exhibited a sleep state distribution and architecture similar to previous NHP and human sleep studies. Acute administration of CAF prior to light offset enhanced wakefulness nearly 4-fold during the dark phase with consequent reductions in both NREM and REM sleep, decreased slow wave activity during wakefulness, and increased higher EEG frequency activity during NREM sleep. Despite the large increase in wakefulness and profound reduction in sleep during the dark phase, no sleep rebound was observed during the 24 h light and dark phases following caffeine administration. Cynomolgus macaques show sleep characteristics, EEG spectral structure, and respond to CAF in a similar manner to humans. Consequently, monitoring EEG/EMG by telemetry in this species may be useful both for basic sleep/wake studies and for pre-clinical assessments of drug-induced effects on sleep/wake.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2018.08.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37359312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Does working memory improvement benefit from sleep in older adults? 老年人的工作记忆改善是否受益于睡眠?
Neurobiology of Sleep and Circadian Rhythms Pub Date : 2019-01-01 DOI: 10.1016/j.nbscr.2019.01.001
Negin Sattari , Lauren N. Whitehurst , Maryam Ahmadi , Sara C. Mednick
{"title":"Does working memory improvement benefit from sleep in older adults?","authors":"Negin Sattari ,&nbsp;Lauren N. Whitehurst ,&nbsp;Maryam Ahmadi ,&nbsp;Sara C. Mednick","doi":"10.1016/j.nbscr.2019.01.001","DOIUrl":"10.1016/j.nbscr.2019.01.001","url":null,"abstract":"<div><p>Working Memory (WM), is an important factor influencing many higher-order cognitive functions that decline with age. Repetitive training appears to increase WM, yet the mechanisms underlying this improvement are not understood. Sleep has been shown to benefit long-term memory formation and may also play a role in WM enhancement in young adults. However, considering age-related decline in sleep, it is uninvestigated whether sleep will facilitate WM in older adults. In the present work, we investigated the impact of a nap, quiet wakefulness (QW) and active wakefulness (AW) on within-day training on the Operation Span (OSPAN) task in older adults. Improvement in WM was found following a nap and QW, but not active wake. Furthermore, better WM was associated with shared electrophysiological features, including slow oscillation (SO, 0.5–1 Hz) power in both the nap and QW, and greater coupling between SO and sigma (12–15 Hz) in the nap. In summary, our data suggest that WM improvement in older adults occurs opportunistically during offline periods that afford enhancement in slow oscillation power, and that further benefits may come with cross-frequency coupling of neural oscillations during sleep.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2019.01.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37359315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
The neuron-specific interleukin-1 receptor accessory protein alters emergent network state properties in Vitro 神经元特异性白细胞介素-1受体辅助蛋白在体外改变突现网络状态特性
Neurobiology of Sleep and Circadian Rhythms Pub Date : 2019-01-01 DOI: 10.1016/j.nbscr.2019.01.002
Joseph T. Nguyen , Dinuka Sahabandu , Ping Taishi , Mengran Xue , Kathryn Jewett , Cheryl Dykstra-Aiello , Sandip Roy , James M. Krueger
{"title":"The neuron-specific interleukin-1 receptor accessory protein alters emergent network state properties in Vitro","authors":"Joseph T. Nguyen ,&nbsp;Dinuka Sahabandu ,&nbsp;Ping Taishi ,&nbsp;Mengran Xue ,&nbsp;Kathryn Jewett ,&nbsp;Cheryl Dykstra-Aiello ,&nbsp;Sandip Roy ,&nbsp;James M. Krueger","doi":"10.1016/j.nbscr.2019.01.002","DOIUrl":"https://doi.org/10.1016/j.nbscr.2019.01.002","url":null,"abstract":"<div><p>Small <em>in vitro</em> neuronal/glial networks exhibit sleep-like states. Sleep regulatory substance interleukin-1β (IL1) signals via its type I receptor and a receptor accessory protein (AcP). AcP has a neuron-specific isoform called AcPb. After sleep deprivation, AcPb, but not AcP, upregulates in brain, and mice lacking AcPb lack sleep rebound. Herein we used action potentials (APs), AP burstiness, synchronization of electrical activity (SYN), and delta wave (0.5–3.75 Hz) power to characterize cortical culture network state. Homologous parameters are used <em>in vivo</em> to characterize sleep. Cortical cells from 1–2-day-old pups from AcP knockout (KO, lacking both AcP and AcPb), AcPb KO (lacking only AcPb), and wild type (WT) mice were cultured separately on multi-electrode arrays. Recordings of spontaneous activity were taken each day during days 4–14 <em>in vitro</em>. In addition, cultures were treated with IL1, or in separate experiments, stimulated electrically to determine evoked response potentials (ERPs). In AcP KO cells, the maturation of network properties accelerated compared to those from cells lacking only AcPb. In contrast, the lack of AcPb delayed spontaneous network emergence of sleep-linked properties. The addition of IL1 enhanced delta wave power in WT cells but not in AcP KO or AcPb KO cells. The ontology of electrically-induced ERPs was delayed in AcP KO cells. We conclude IL1 signaling has a critical role in the emergence of sleep-linked network behavior with AcP playing a dominant role in the slowing of development while AcPb enhances development rates of sleep-linked emergent network properties.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2019.01.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72117475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Glucocorticoid and inflammatory reactivity to a repeated physiological stressor in insomnia disorder 失眠障碍中糖皮质激素和对重复生理应激源的炎症反应
Neurobiology of Sleep and Circadian Rhythms Pub Date : 2019-01-01 DOI: 10.1016/j.nbscr.2018.06.001
J.K. Devine , S.M. Bertisch , H. Yang , J. Scott-Sutherland , A. Wilkins , V. Molina , K. Henrikson , M. Haack
{"title":"Glucocorticoid and inflammatory reactivity to a repeated physiological stressor in insomnia disorder","authors":"J.K. Devine ,&nbsp;S.M. Bertisch ,&nbsp;H. Yang ,&nbsp;J. Scott-Sutherland ,&nbsp;A. Wilkins ,&nbsp;V. Molina ,&nbsp;K. Henrikson ,&nbsp;M. Haack","doi":"10.1016/j.nbscr.2018.06.001","DOIUrl":"10.1016/j.nbscr.2018.06.001","url":null,"abstract":"<div><p>Despite known associations of insomnia disorder with alterations in cytokine and glucocorticoid (GC) production, neither the sensitivity of immune cells to a GC signal nor the reactivity of the hypothalamus-pituitary-adrenal (HPA) axis and inflammatory system to stress, or adaptation of these systems to repeated stress have been assessed in patients with insomnia. To investigate potential dysregulation in stress reactivity and adaptation to repeated exposure, a physiological stressor (the cold pressor test; CPT) was repeatedly administered to N = 20 participants with insomnia disorder (based on DSM-V, 18 females, age 30 ± 2.5 years) and N = 20 sex-matched healthy controls following an at-home actigraphy and in-laboratory PSG. HPA and inflammatory markers (serum cortisol, plasma interleukin [IL]-6) were measured at baseline/resting levels and following each of the three CPTs. In addition, sensitivity of monocytes to the synthetic GC dexamethasone was assessed in-vitro at baseline levels in order to examine the cortisol-IL-6 interplay at the cell level. Compared to healthy controls, individuals with insomnia disorder exhibited shorter sleep duration as assessed by actigraphy and PSG (p ≤ 0.05). HPA, but not inflammatory reactivity to the repeated CPT challenge was greater in insomnia disorder (p ≤ 0.05 for group effect), due to greater cortisol responses to the initial CPT (p ≤ 0.05). There were no between-group differences in the ability of the HPA to adapt to stress repetition nor in basal/resting levels of cortisol, IL-6, and GC sensitivity. These findings suggest that insomnia disorder potentiates HPA axis reactivity to initial/novel stressors, which may constitute a pathway underlying adverse health consequences in the long term.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2018.06.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37362397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Investigating the relationships between hypothalamic volume and measures of circadian rhythm and habitual sleep in premanifest Huntington's disease 研究先兆亨廷顿病患者下丘脑体积与昼夜节律测量和习惯性睡眠之间的关系
Neurobiology of Sleep and Circadian Rhythms Pub Date : 2019-01-01 DOI: 10.1016/j.nbscr.2018.07.001
Danielle M. Bartlett , Juan F. Domínguez D , Alvaro Reyes , Pauline Zaenker , Kirk W. Feindel , Robert U. Newton , Anthony J. Hannan , James A. Slater , Peter R. Eastwood , Alpar S. Lazar , Mel Ziman , Travis Cruickshank
{"title":"Investigating the relationships between hypothalamic volume and measures of circadian rhythm and habitual sleep in premanifest Huntington's disease","authors":"Danielle M. Bartlett ,&nbsp;Juan F. Domínguez D ,&nbsp;Alvaro Reyes ,&nbsp;Pauline Zaenker ,&nbsp;Kirk W. Feindel ,&nbsp;Robert U. Newton ,&nbsp;Anthony J. Hannan ,&nbsp;James A. Slater ,&nbsp;Peter R. Eastwood ,&nbsp;Alpar S. Lazar ,&nbsp;Mel Ziman ,&nbsp;Travis Cruickshank","doi":"10.1016/j.nbscr.2018.07.001","DOIUrl":"10.1016/j.nbscr.2018.07.001","url":null,"abstract":"<div><h3>Objective</h3><p>Pathological changes within the hypothalamus have been proposed to mediate circadian rhythm and habitual sleep disturbances in individuals with Huntington’s disease (HD). However, investigations examining the relationships between hypothalamic volume and circadian rhythm and habitual sleep in individuals with HD are sparse. This study aimed to comprehensively evaluate the relationships between hypothalamic pathology and circadian rhythm and habitual sleep disturbances in individuals with premanifest HD.</p></div><div><h3>Methods</h3><p>Thirty-two individuals with premanifest HD and twenty-nine healthy age- and gender-matched controls participated in this dual-site, cross-sectional study. Magnetic resonance imaging scans were performed to evaluate hypothalamic volume. Circadian rhythm and habitual sleep were assessed via measurement of morning and evening cortisol and melatonin levels, wrist-worn actigraphy, the Consensus Sleep Diary and sleep questionnaires. Information on mood, physical activity levels and body composition were also collected.</p></div><div><h3>Results</h3><p>Compared to healthy controls, individuals with premanifest HD displayed significantly reduced grey matter volume in the hypothalamus, decreased habitual sleep efficiency and increased awakenings; however, no alterations in morning cortisol or evening melatonin release were noted in individuals with premanifest HD. While differences in the associations between hypothalamic volume and cortisol and melatonin output existed in individuals with premanifest HD compared to healthy controls, no consistent associations were observed between hypothalamic volume and circadian rhythm or habitual sleep outcomes.</p></div><div><h3>Conclusion</h3><p>While significant differences in associations between hypothalamic volume and cortisol and melatonin existed between individuals with premanifest HD and healthy controls, no differences in circadian markers were observed between the groups. This suggests that circadian regulation is maintained despite hypothalamic pathology, perhaps via neural compensation. Longitudinal studies are required to further understand the relationships between the hypothalamus and circadian rhythm and habitual sleep disturbances in HD as the disease course lengthens.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2018.07.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37359311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Sleep and circadian defects in a Drosophila model of mitochondrial encephalomyopathy 线粒体脑肌病果蝇模型的睡眠和昼夜节律缺陷
Neurobiology of Sleep and Circadian Rhythms Pub Date : 2019-01-01 DOI: 10.1016/j.nbscr.2019.01.003
Keri J. Fogle , Catherina L. Mobini , Abygail S. Paseos , Michael J. Palladino
{"title":"Sleep and circadian defects in a Drosophila model of mitochondrial encephalomyopathy","authors":"Keri J. Fogle ,&nbsp;Catherina L. Mobini ,&nbsp;Abygail S. Paseos ,&nbsp;Michael J. Palladino","doi":"10.1016/j.nbscr.2019.01.003","DOIUrl":"https://doi.org/10.1016/j.nbscr.2019.01.003","url":null,"abstract":"<div><p>Mitochondrial encephalomyopathies (ME) are complex, incurable diseases characterized by severe bioenergetic distress that can affect the function of all major organ systems but is especially taxing to neuromuscular tissues. Animal models of MEs are rare, but the <em>Drosophila ATP6</em><sup><em>1</em></sup> mutant is a stable, well-characterized genetic line that accurately models progressive human mitochondrial diseases such as Maternally-Inherited Leigh Syndrome (MILS), Neuropathy, Ataxia, and Retinitis Pigmentosa (NARP), and Familial Bilateral Striatal Necrosis (FBSN). While it is established that this model exhibits important hallmarks of ME, including excess cellular and mitochondrial reactive oxygen species, shortened lifespan, muscle degeneration, and stress-induced seizures, it is unknown whether it exhibits defects in sleep or circadian function. This is a clinically relevant question, as many neurological and neurodegenerative diseases are characterized by such disturbances, which can exacerbate other symptoms and worsen quality of life. Since <em>Drosophila</em> is highly amenable to sleep and circadian studies, we asked whether we could detect disease phenotypes in the circadian behaviors of <em>ATP6</em><sup><em>1</em></sup>. Indeed, we found that day-time and night-time activity and sleep are altered through disease progression, and that circadian patterns are disrupted at both the behavioral and neuronal levels. These results establish <em>ATP6</em><sup><em>1</em></sup> as an important model of sleep and circadian disruption in ME that can be studied mechanistically at the molecular, cellular, and behavioral level to uncover underlying pathophysiology and test novel therapies.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2019.01.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72082744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信