Transactions of the American Mathematical Society, Series B最新文献

筛选
英文 中文
Hausdorff dimension estimates applied to Lagrange and Markov spectra, Zaremba theory, and limit sets of Fuchsian groups Hausdorff维估计应用于Lagrange和Markov谱,Zaremba理论和Fuchsian群的极限集
Transactions of the American Mathematical Society, Series B Pub Date : 2020-12-13 DOI: 10.1090/btran/109
M. Pollicott, P. Vytnova
{"title":"Hausdorff dimension estimates applied to Lagrange and Markov spectra, Zaremba theory, and limit sets of Fuchsian groups","authors":"M. Pollicott, P. Vytnova","doi":"10.1090/btran/109","DOIUrl":"https://doi.org/10.1090/btran/109","url":null,"abstract":"In this note we will describe a simple and practical approach to get rigorous bounds on the Hausdorff dimension of limits sets for some one dimensional Markov iterated function schemes. The general problem has attracted considerable attention, but we are particularly concerned with the role of the value of the Hausdorff dimension in solving conjectures and problems in other areas of mathematics. As our first application we confirm, and often strengthen, conjectures on the difference of the Lagrange and Markov spectra in Diophantine analysis, which appear in the work of Matheus and Moreira [Comment. Math. Helv. 95 (2020), pp. 593–633]. As a second application we (re-)validate and improve estimates connected with the Zaremba conjecture in number theory, used in the work of Bourgain–Kontorovich [Ann. of Math. (2) 180 (2014), pp. 137–196], Huang [An improvement to Zaremba’s conjecture, ProQuest LLC, Ann Arbor, MI, 2015] and Kan [Mat. Sb. 210 (2019), pp. 75–130]. As a third more geometric application, we rigorously bound the bottom of the spectrum of the Laplacian for infinite area surfaces, as illustrated by an example studied by McMullen [Amer. J. Math. 120 (1998), pp. 691-721].\u0000\u0000In all approaches to estimating the dimension of limit sets there are questions about the efficiency of the algorithm, the computational effort required and the rigour of the bounds. The approach we use has the virtues of being simple and efficient and we present it in this paper in a way that is straightforward to implement.\u0000\u0000These estimates apparently cannot be obtained by other known methods.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126466323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
The cohomology of semi-simple Lie groups, viewed from infinity 从无穷远处看半简单李群的上同调
Transactions of the American Mathematical Society, Series B Pub Date : 2020-11-24 DOI: 10.1090/btran/85
N. Monod
{"title":"The cohomology of semi-simple Lie groups, viewed from infinity","authors":"N. Monod","doi":"10.1090/btran/85","DOIUrl":"https://doi.org/10.1090/btran/85","url":null,"abstract":"We prove that the real cohomology of semi-simple Lie groups admits boundary values, which are measurable cocycles on the Furstenberg boundary. This generalises known invariants such as the Maslov index on Shilov boundaries, the Euler class on projective space, or the hyperbolic ideal volume on spheres.\u0000\u0000In rank one, this leads to an isomorphism between the cohomology of the group and of this boundary model. In higher rank, additional classes appear, which we determine completely.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125205275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Hyperbolic distance versus quasihyperbolic distance in plane domains 平面上的双曲距离与准双曲距离
Transactions of the American Mathematical Society, Series B Pub Date : 2020-11-22 DOI: 10.1090/btran/73
D. Herron, Jeff Lindquist
{"title":"Hyperbolic distance versus quasihyperbolic distance in plane domains","authors":"D. Herron, Jeff Lindquist","doi":"10.1090/btran/73","DOIUrl":"https://doi.org/10.1090/btran/73","url":null,"abstract":"We examine Euclidean plane domains with their hyperbolic or quasihyperbolic distance. We prove that the associated metric spaces are quasisymmetrically equivalent if and only if they are bi-Lipschitz equivalent. On the other hand, for Gromov hyperbolic domains, the two corresponding Gromov boundaries are always quasisymmetrically equivalent. Surprisingly, for any finitely connected hyperbolic domain, these two metric spaces are always quasiisometrically equivalent. We construct examples where the spaces are not quasiisometrically equivalent.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124404032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fractional partitions and conjectures of Chern–Fu–Tang and Heim–Neuhauser 陈福堂和海姆-诺伊豪瑟的分数分区和猜想
Transactions of the American Mathematical Society, Series B Pub Date : 2020-11-17 DOI: 10.1090/BTRAN/77
K. Bringmann, B. Kane, Larry Rolen, Z. Tripp
{"title":"Fractional partitions and conjectures of Chern–Fu–Tang and Heim–Neuhauser","authors":"K. Bringmann, B. Kane, Larry Rolen, Z. Tripp","doi":"10.1090/BTRAN/77","DOIUrl":"https://doi.org/10.1090/BTRAN/77","url":null,"abstract":"Many papers have studied inequalities for partition functions. Recently, a number of papers have considered mixtures between additive and multiplicative behavior in such inequalities. In particular, Chern–Fu–Tang and Heim–Neuhauser gave conjectures on inequalities for coefficients of powers of the generating partition function. These conjectures were posed in the context of colored partitions and the Nekrasov–Okounkov formula. Here, we study the precise size of differences of products of two such coefficients. This allows us to prove the Chern–Fu–Tang conjecture and to show the Heim–Neuhauser conjecture in a certain range. The explicit error terms provided will also be useful in the future study of partition inequalities. These are laid out in a user-friendly way for the researcher in combinatorics interested in such analytic questions.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114619770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
The Hausdorff dimension of the harmonic measure for relatively hyperbolic groups 相对双曲群调和测度的Hausdorff维数
Transactions of the American Mathematical Society, Series B Pub Date : 2020-10-15 DOI: 10.1090/btran/145
Matthieu Dussaule, Wen-yuan Yang
{"title":"The Hausdorff dimension of the harmonic measure for relatively hyperbolic groups","authors":"Matthieu Dussaule, Wen-yuan Yang","doi":"10.1090/btran/145","DOIUrl":"https://doi.org/10.1090/btran/145","url":null,"abstract":"The paper studies the Hausdorff dimension of harmonic measures on various boundaries of a relatively hyperbolic group which are associated with random walks driven by a probability measure with finite first moment. With respect to the Floyd metric and the shortcut metric, we prove that the Hausdorff dimension of the harmonic measure equals the ratio of the entropy and the drift of the random walk.\u0000\u0000If the group is infinitely-ended, the same dimension formula is obtained for the end boundary endowed with a visual metric. In addition, the Hausdorff dimension of the visual metric is identified with the growth rate of the word metric. These results are complemented by a characterization of doubling visual metrics for accessible infinitely-ended groups: the visual metrics on the end boundary is doubling if and only if the group is virtually free. Consequently, there are at least two different bi-Hölder classes (and thus quasi-symmetric classes) of visual metrics on the end boundary.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123682125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Quantitative stability for minimizing Yamabe metrics 最小化Yamabe度量的定量稳定性
Transactions of the American Mathematical Society, Series B Pub Date : 2020-09-30 DOI: 10.1090/btran/111
{"title":"Quantitative stability for minimizing Yamabe metrics","authors":"","doi":"10.1090/btran/111","DOIUrl":"https://doi.org/10.1090/btran/111","url":null,"abstract":"On any closed Riemannian manifold of dimension \u0000\u0000 \u0000 \u0000 n\u0000 ≥\u0000 3\u0000 \u0000 ngeq 3\u0000 \u0000\u0000, we prove that if a function nearly minimizes the Yamabe energy, then the corresponding conformal metric is close, in a quantitative sense, to a minimizing Yamabe metric in the conformal class. Generically, this distance is controlled quadratically by the Yamabe energy deficit. Finally, we produce an example for which this quadratic estimate is false.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125059364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Lower bounds on the F-pure threshold and extremal singularities f纯阈值和极值奇点的下界
Transactions of the American Mathematical Society, Series B Pub Date : 2020-09-28 DOI: 10.1090/btran/106
Zhibek Kadyrsizova, J. Kenkel, Janet Page, J. Singh, Karen E. Smith, Adela Vraciu, E. Witt
{"title":"Lower bounds on the F-pure threshold and extremal singularities","authors":"Zhibek Kadyrsizova, J. Kenkel, Janet Page, J. Singh, Karen E. Smith, Adela Vraciu, E. Witt","doi":"10.1090/btran/106","DOIUrl":"https://doi.org/10.1090/btran/106","url":null,"abstract":"<p>We prove that if <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\u0000 <mml:semantics>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a reduced homogeneous polynomial of degree <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\u0000 <mml:semantics>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, then its <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\u0000 <mml:semantics>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-pure threshold at the unique homogeneous maximal ideal is at least <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartFraction 1 Over d minus 1 EndFraction\">\u0000 <mml:semantics>\u0000 <mml:mfrac>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mrow>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 </mml:mfrac>\u0000 <mml:annotation encoding=\"application/x-tex\">frac {1}{d-1}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. We show, furthermore, that its <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\u0000 <mml:semantics>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-pure threshold equals <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartFraction 1 Over d minus 1 EndFraction\">\u0000 <mml:semantics>\u0000 <mml:mfrac>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mrow>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 </mml:mfrac>\u0000 <mml:annotation encoding=\"application/x-tex\">frac {1}{d-1}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> if and only if <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f element-of German m Superscript left-bracket q right-bracket\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo>∈<!-- ∈ --></mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"fraktur\">m</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mi>q</mml:mi>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">fin mathfrak m^{[q]}</mml:annotation>\u0000 </mml:sema","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130661206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Quantum Cuntz-Krieger algebras 有什麽错
Transactions of the American Mathematical Society, Series B Pub Date : 2020-09-20 DOI: 10.1090/btran/88
Mike Brannan, Kari Eifler, C. Voigt, Moritz Weber
{"title":"Quantum Cuntz-Krieger algebras","authors":"Mike Brannan, Kari Eifler, C. Voigt, Moritz Weber","doi":"10.1090/btran/88","DOIUrl":"https://doi.org/10.1090/btran/88","url":null,"abstract":"Motivated by the theory of Cuntz-Krieger algebras we define and study \u0000\u0000 \u0000 \u0000 C\u0000 ∗\u0000 \u0000 C^ast\u0000 \u0000\u0000-algebras associated to directed quantum graphs. For classical graphs the \u0000\u0000 \u0000 \u0000 C\u0000 ∗\u0000 \u0000 C^ast\u0000 \u0000\u0000-algebras obtained this way can be viewed as free analogues of Cuntz-Krieger algebras, and need not be nuclear.\u0000\u0000We study two particular classes of quantum graphs in detail, namely the trivial and the complete quantum graphs. For the trivial quantum graph on a single matrix block, we show that the associated quantum Cuntz-Krieger algebra is neither unital, nuclear nor simple, and does not depend on the size of the matrix block up to \u0000\u0000 \u0000 \u0000 K\u0000 K\u0000 \u0000 KK\u0000 \u0000\u0000-equivalence. In the case of the complete quantum graphs we use quantum symmetries to show that, in certain cases, the corresponding quantum Cuntz-Krieger algebras are isomorphic to Cuntz algebras. These isomorphisms, which seem far from obvious from the definitions, imply in particular that these \u0000\u0000 \u0000 \u0000 C\u0000 ∗\u0000 \u0000 C^ast\u0000 \u0000\u0000-algebras are all pairwise non-isomorphic for complete quantum graphs of different dimensions, even on the level of \u0000\u0000 \u0000 \u0000 K\u0000 K\u0000 \u0000 KK\u0000 \u0000\u0000-theory.\u0000\u0000We explain how the notion of unitary error basis from quantum information theory can help to elucidate the situation.\u0000\u0000We also discuss quantum symmetries of quantum Cuntz-Krieger algebras in general.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115826842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
On toric geometry and K-stability of Fano varieties 关于Fano品种的环面几何和k稳定性
Transactions of the American Mathematical Society, Series B Pub Date : 2020-09-04 DOI: 10.1090/btran/82
Anne-Sophie Kaloghiros, Andrea Petracci
{"title":"On toric geometry and K-stability of Fano varieties","authors":"Anne-Sophie Kaloghiros, Andrea Petracci","doi":"10.1090/btran/82","DOIUrl":"https://doi.org/10.1090/btran/82","url":null,"abstract":"We present some applications of the deformation theory of toric Fano varieties to K-(semi/poly)stability of Fano varieties. First, we present two examples of K-polystable toric Fano \u0000\u0000 \u0000 3\u0000 3\u0000 \u0000\u0000-fold with obstructed deformations. In one case, the K-moduli spaces and stacks are reducible near the closed point associated to the toric Fano \u0000\u0000 \u0000 3\u0000 3\u0000 \u0000\u0000-fold, while in the other they are non-reduced near the closed point associated to the toric Fano \u0000\u0000 \u0000 3\u0000 3\u0000 \u0000\u0000-fold. Second, we study K-stability of the general members of two deformation families of smooth Fano \u0000\u0000 \u0000 3\u0000 3\u0000 \u0000\u0000-folds by building degenerations to K-polystable toric Fano \u0000\u0000 \u0000 3\u0000 3\u0000 \u0000\u0000-folds.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125622386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Orthogonal rational functions with real poles, root asymptotics, and GMP matrices 具有实极点的正交有理函数,根渐近性,和GMP矩阵
Transactions of the American Mathematical Society, Series B Pub Date : 2020-08-27 DOI: 10.1090/btran/117
B. Eichinger, Milivoje Luki'c, Giorgio Young
{"title":"Orthogonal rational functions with real poles, root asymptotics, and GMP matrices","authors":"B. Eichinger, Milivoje Luki'c, Giorgio Young","doi":"10.1090/btran/117","DOIUrl":"https://doi.org/10.1090/btran/117","url":null,"abstract":"There is a vast theory of the asymptotic behavior of orthogonal polynomials with respect to a measure on \u0000\u0000 \u0000 \u0000 R\u0000 \u0000 mathbb {R}\u0000 \u0000\u0000 and its applications to Jacobi matrices. That theory has an obvious affine invariance and a very special role for \u0000\u0000 \u0000 ∞\u0000 infty\u0000 \u0000\u0000. We extend aspects of this theory in the setting of rational functions with poles on \u0000\u0000 \u0000 \u0000 \u0000 \u0000 R\u0000 \u0000 ¯\u0000 \u0000 =\u0000 \u0000 R\u0000 \u0000 ∪\u0000 {\u0000 ∞\u0000 }\u0000 \u0000 overline {mathbb {R}} = mathbb {R} cup {infty }\u0000 \u0000\u0000, obtaining a formulation which allows multiple poles and proving an invariance with respect to \u0000\u0000 \u0000 \u0000 \u0000 R\u0000 \u0000 ¯\u0000 \u0000 overline {mathbb {R}}\u0000 \u0000\u0000-preserving Möbius transformations. We obtain a characterization of Stahl–Totik regularity of a GMP matrix in terms of its matrix elements; as an application, we give a proof of a conjecture of Simon – a Cesàro–Nevai property of regular Jacobi matrices on finite gap sets.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116216988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信