Lower bounds on the F-pure threshold and extremal singularities

Zhibek Kadyrsizova, J. Kenkel, Janet Page, J. Singh, Karen E. Smith, Adela Vraciu, E. Witt
{"title":"Lower bounds on the F-pure threshold and extremal singularities","authors":"Zhibek Kadyrsizova, J. Kenkel, Janet Page, J. Singh, Karen E. Smith, Adela Vraciu, E. Witt","doi":"10.1090/btran/106","DOIUrl":null,"url":null,"abstract":"<p>We prove that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a reduced homogeneous polynomial of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, then its <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-pure threshold at the unique homogeneous maximal ideal is at least <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartFraction 1 Over d minus 1 EndFraction\">\n <mml:semantics>\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:mfrac>\n <mml:annotation encoding=\"application/x-tex\">\\frac {1}{d-1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We show, furthermore, that its <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-pure threshold equals <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartFraction 1 Over d minus 1 EndFraction\">\n <mml:semantics>\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:mfrac>\n <mml:annotation encoding=\"application/x-tex\">\\frac {1}{d-1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> if and only if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f element-of German m Superscript left-bracket q right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">m</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f\\in \\mathfrak m^{[q]}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals q plus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d=q+1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\">\n <mml:semantics>\n <mml:mi>q</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a power of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Up to linear changes of coordinates (over a fixed algebraically closed field), we classify such “extremal singularities”, and show that there is at most one with isolated singularity. Finally, we indicate several ways in which the projective hypersurfaces defined by such forms are “extremal”, for example, in terms of the configurations of lines they can contain.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We prove that if f f is a reduced homogeneous polynomial of degree d d , then its F F -pure threshold at the unique homogeneous maximal ideal is at least 1 d 1 \frac {1}{d-1} . We show, furthermore, that its F F -pure threshold equals 1 d 1 \frac {1}{d-1} if and only if f m [ q ] f\in \mathfrak m^{[q]} and d = q + 1 d=q+1 , where q q is a power of p p . Up to linear changes of coordinates (over a fixed algebraically closed field), we classify such “extremal singularities”, and show that there is at most one with isolated singularity. Finally, we indicate several ways in which the projective hypersurfaces defined by such forms are “extremal”, for example, in terms of the configurations of lines they can contain.

f纯阈值和极值奇点的下界
我们证明了如果f f是d次的简化齐次多项式,那么它在唯一齐次极大理想处的f f纯阈值至少为1 d−1 \frac {1}{d-1}。进一步证明,当且仅当F∈m [q] F \in \mathfrak m^{[q]}且d=q+1 d=q+1时,它的F - F纯阈值等于1 d−1 \frac {1}{d-1},其中q q是p p的幂。直到坐标的线性变化(在一个固定的代数闭域上),我们对这类“极端奇点”进行了分类,并证明了最多存在一个孤立奇点。最后,我们指出了由这种形式定义的射影超曲面是“极值”的几种方式,例如,就它们可以包含的线的配置而言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信