最小化Yamabe度量的定量稳定性

{"title":"最小化Yamabe度量的定量稳定性","authors":"","doi":"10.1090/btran/111","DOIUrl":null,"url":null,"abstract":"On any closed Riemannian manifold of dimension \n\n \n \n n\n ≥\n 3\n \n n\\geq 3\n \n\n, we prove that if a function nearly minimizes the Yamabe energy, then the corresponding conformal metric is close, in a quantitative sense, to a minimizing Yamabe metric in the conformal class. Generically, this distance is controlled quadratically by the Yamabe energy deficit. Finally, we produce an example for which this quadratic estimate is false.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Quantitative stability for minimizing Yamabe metrics\",\"authors\":\"\",\"doi\":\"10.1090/btran/111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On any closed Riemannian manifold of dimension \\n\\n \\n \\n n\\n ≥\\n 3\\n \\n n\\\\geq 3\\n \\n\\n, we prove that if a function nearly minimizes the Yamabe energy, then the corresponding conformal metric is close, in a quantitative sense, to a minimizing Yamabe metric in the conformal class. Generically, this distance is controlled quadratically by the Yamabe energy deficit. Finally, we produce an example for which this quadratic estimate is false.\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在任何维数n≥3n \geq 3的封闭黎曼流形上,证明了如果一个函数几乎极小Yamabe能量,那么对应的保形度量在定量意义上接近于保形类中的最小化Yamabe度量。一般来说,这个距离是由Yamabe能量赤字二次控制的。最后,我们给出了一个二次估计为假的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative stability for minimizing Yamabe metrics
On any closed Riemannian manifold of dimension n ≥ 3 n\geq 3 , we prove that if a function nearly minimizes the Yamabe energy, then the corresponding conformal metric is close, in a quantitative sense, to a minimizing Yamabe metric in the conformal class. Generically, this distance is controlled quadratically by the Yamabe energy deficit. Finally, we produce an example for which this quadratic estimate is false.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信