{"title":"最小化Yamabe度量的定量稳定性","authors":"","doi":"10.1090/btran/111","DOIUrl":null,"url":null,"abstract":"On any closed Riemannian manifold of dimension \n\n \n \n n\n ≥\n 3\n \n n\\geq 3\n \n\n, we prove that if a function nearly minimizes the Yamabe energy, then the corresponding conformal metric is close, in a quantitative sense, to a minimizing Yamabe metric in the conformal class. Generically, this distance is controlled quadratically by the Yamabe energy deficit. Finally, we produce an example for which this quadratic estimate is false.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Quantitative stability for minimizing Yamabe metrics\",\"authors\":\"\",\"doi\":\"10.1090/btran/111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On any closed Riemannian manifold of dimension \\n\\n \\n \\n n\\n ≥\\n 3\\n \\n n\\\\geq 3\\n \\n\\n, we prove that if a function nearly minimizes the Yamabe energy, then the corresponding conformal metric is close, in a quantitative sense, to a minimizing Yamabe metric in the conformal class. Generically, this distance is controlled quadratically by the Yamabe energy deficit. Finally, we produce an example for which this quadratic estimate is false.\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantitative stability for minimizing Yamabe metrics
On any closed Riemannian manifold of dimension
n
≥
3
n\geq 3
, we prove that if a function nearly minimizes the Yamabe energy, then the corresponding conformal metric is close, in a quantitative sense, to a minimizing Yamabe metric in the conformal class. Generically, this distance is controlled quadratically by the Yamabe energy deficit. Finally, we produce an example for which this quadratic estimate is false.