On toric geometry and K-stability of Fano varieties

Anne-Sophie Kaloghiros, Andrea Petracci
{"title":"On toric geometry and K-stability of Fano varieties","authors":"Anne-Sophie Kaloghiros, Andrea Petracci","doi":"10.1090/btran/82","DOIUrl":null,"url":null,"abstract":"We present some applications of the deformation theory of toric Fano varieties to K-(semi/poly)stability of Fano varieties. First, we present two examples of K-polystable toric Fano \n\n \n 3\n 3\n \n\n-fold with obstructed deformations. In one case, the K-moduli spaces and stacks are reducible near the closed point associated to the toric Fano \n\n \n 3\n 3\n \n\n-fold, while in the other they are non-reduced near the closed point associated to the toric Fano \n\n \n 3\n 3\n \n\n-fold. Second, we study K-stability of the general members of two deformation families of smooth Fano \n\n \n 3\n 3\n \n\n-folds by building degenerations to K-polystable toric Fano \n\n \n 3\n 3\n \n\n-folds.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present some applications of the deformation theory of toric Fano varieties to K-(semi/poly)stability of Fano varieties. First, we present two examples of K-polystable toric Fano 3 3 -fold with obstructed deformations. In one case, the K-moduli spaces and stacks are reducible near the closed point associated to the toric Fano 3 3 -fold, while in the other they are non-reduced near the closed point associated to the toric Fano 3 3 -fold. Second, we study K-stability of the general members of two deformation families of smooth Fano 3 3 -folds by building degenerations to K-polystable toric Fano 3 3 -folds.
关于Fano品种的环面几何和k稳定性
本文介绍了环形法诺品种的变形理论在法诺品种K-(半/聚)稳定性中的一些应用。首先,我们给出了两个具有阻塞变形的k -多稳态环型Fano - 33褶皱的例子。在一种情况下,k模空间和堆栈在与环面Fano 33 -fold相关的闭点附近是可约的,而在另一种情况下,它们在与环面Fano 33 -fold相关的闭点附近是不可约的。其次,通过建立k -聚稳定的环形Fano 33褶皱的退化,研究了光滑Fano 33褶皱两个变形族一般成员的k -稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信