Journal of Space Safety Engineering最新文献

筛选
英文 中文
Validation results on future flight safety methods to be instituted at the Guiana Space Center -New Generation 未来飞行安全方法的验证结果将在圭亚那航天中心制定-新一代
Journal of Space Safety Engineering Pub Date : 2023-10-18 DOI: 10.1016/j.jsse.2023.10.002
Mélissa ZEMOURA , Sandra STEERE
{"title":"Validation results on future flight safety methods to be instituted at the Guiana Space Center -New Generation","authors":"Mélissa ZEMOURA ,&nbsp;Sandra STEERE","doi":"10.1016/j.jsse.2023.10.002","DOIUrl":"10.1016/j.jsse.2023.10.002","url":null,"abstract":"<div><p>In the very short term, the European Spaceport in French Guiana (CSG) will welcome new kinds of missions and launchers, such as Ariane 6, micro-launchers or reusable vehicles, and must prepare to operate them. At the same time, the launch safety process must be improved in order to maintain flight safety standards and to respect the requirements of the French Space Operation Act (FSOA <span>[1]</span>) regarding the new risks induced. The Flight Safety Department at CSG has been working on the development of new methods to fit these upcoming challenges while enabling the best possible protection to people, the environment and infrastructures. These concepts will be implemented with the arrival of the new Operations Centre (CDO).</p><p>Although the flight termination decision remains on a human authority, the process to evaluate the dangerousness of a mission is optimized in order to gain reactivity and effectiveness. As presented at the 73rd IAC [<span>2</span>], this optimization of methods relies on both decreasing the number of operators within the flight safety team during launch operations and on implementing decision-aiding algorithms to better characterize the launcher condition status at any time. This implies a new distribution of the responsibilities between the safety operators and a redesign of the systems in the future organization at CSG.</p><p>A large test campaign has already been conducted with the participation of all flight safety officers in order to collect data covering different fields [<span>2</span><span>]: personal and collective impressions, level of comfort, trust in the new concepts and comparison to the current process, amongst others. In follow-up of this study, to consolidate and validate the operability of the presented concepts and methods, the impacts of this new organization on the flight safety officers have been evaluated in order to apprehend the main changes compared to the current organization. In addition, a specific evaluation was performed in order to study the operator behaviour during various simulations of dangerous-case scenarios in which the launcher trajectory or on-board parameters deteriorated. The most critical cases were analysed in order to measure the reaction times before terminating the flight, with respect to different configurations of launcher abnormality. When comparing the behaviour and the reaction time of operators between the current and the future organization, we obtained conclusive results that are presented in this paper. These results will help to determine and demonstrate the efficiency of the new suggested method for the future flight safety organization at the CSG New Generation. The test campaign presented in this paper was possible following significant ergonomics choices regarding both the flight safety room configuration and the operator HMI layout. Indeed, the enhancement of flight safety operations has been enabled by a careful selection of decision-aiding alg","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135811190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human and artificial intelligence considerations for long duration space travel – A human factors perspective 长时间太空旅行中人类和人工智能的考虑——人的因素视角
Journal of Space Safety Engineering Pub Date : 2023-10-16 DOI: 10.1016/j.jsse.2023.10.003
Karl E. Bridges
{"title":"Human and artificial intelligence considerations for long duration space travel – A human factors perspective","authors":"Karl E. Bridges","doi":"10.1016/j.jsse.2023.10.003","DOIUrl":"10.1016/j.jsse.2023.10.003","url":null,"abstract":"<div><p>Real-time communications with ground support are fundamental to ensuring crew safety in space. However, there will be long delays in communication as space missions travel further away from Earth. During a time- and life-critical situation, the crew will need on-board Artificial Intelligence (AI) driven technology<span> to support anomaly mitigation decision-making and response. This paper discusses human factors considerations to help crew problem-solving, reduce errors, and enhance safety on exploration class missions.</span></p></div>","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135762039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the role of future HLA-based simulation in designing safety into space vehicles 未来基于hla的仿真在空间飞行器安全设计中的作用
Journal of Space Safety Engineering Pub Date : 2023-10-06 DOI: 10.1016/j.jsse.2023.10.001
Frank Morlang
{"title":"On the role of future HLA-based simulation in designing safety into space vehicles","authors":"Frank Morlang","doi":"10.1016/j.jsse.2023.10.001","DOIUrl":"10.1016/j.jsse.2023.10.001","url":null,"abstract":"<div><p><span>This paper discusses High Level Architecture (HLA) based simulation in the context of designing safety into space vehicles. Distributed simulation plays an important role to fuse the two worlds of safety on the one hand and cost effectiveness on the other hand. HLA represents a simulation system architecture framework standard and focuses on interoperability and </span>reusability of simulation components. The article analyzes the impact of the usage of the future HLA version called HLA 4 on space vehicle design. New possibilities with an increased level of loose component coupling in combination with the establishment of a-priori interoperability by using the Space Reference Federation Object Model (SpaceFOM) standard are presented.</p></div>","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135567979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zero-G Lab: A multi-purpose facility for emulating space operations 零重力实验室:模拟太空操作的多用途设施
Journal of Space Safety Engineering Pub Date : 2023-10-06 DOI: 10.1016/j.jsse.2023.09.003
Miguel Olivares-Mendez , Mohatashem Reyaz Makhdoomi , Barış Can Yalçın , Zhanna Bokal , Vivek Muralidharan , Miguel Ortiz Del Castillo , Vincent Gaudilliere , Leo Pauly , Olivia Borgue , Mohammadamin Alandihallaj , Jan Thoemel , Ernest Skrzypczyk , Arunkumar Rathinam , Kuldeep Rambhai Barad , Abd El Rahman Shabayek , Andreas M. Hein , Djamila Aouada , Carol Martinez
{"title":"Zero-G Lab: A multi-purpose facility for emulating space operations","authors":"Miguel Olivares-Mendez ,&nbsp;Mohatashem Reyaz Makhdoomi ,&nbsp;Barış Can Yalçın ,&nbsp;Zhanna Bokal ,&nbsp;Vivek Muralidharan ,&nbsp;Miguel Ortiz Del Castillo ,&nbsp;Vincent Gaudilliere ,&nbsp;Leo Pauly ,&nbsp;Olivia Borgue ,&nbsp;Mohammadamin Alandihallaj ,&nbsp;Jan Thoemel ,&nbsp;Ernest Skrzypczyk ,&nbsp;Arunkumar Rathinam ,&nbsp;Kuldeep Rambhai Barad ,&nbsp;Abd El Rahman Shabayek ,&nbsp;Andreas M. Hein ,&nbsp;Djamila Aouada ,&nbsp;Carol Martinez","doi":"10.1016/j.jsse.2023.09.003","DOIUrl":"10.1016/j.jsse.2023.09.003","url":null,"abstract":"<div><p>During orbital rendezvous, the spacecraft typically approach in the same orbital plane, and the phase of the orbit eventually aligns. Potential rendezvous and docking missions need to be emulated and tested in an on-ground facility for micro-gravity research prior to meeting the harsh conditions of space environment. For orbital docking, the velocity profile of the two spacecraft must be matched. The chaser is placed in a slightly lower orbit than the target. Since all these tasks are quite complex and the realization of space missions are very expensive, any space-related hardware or software’s performance must be tested in an on-ground facility providing zero gravity emulation before initiating its operation in space. This facility shall enable emulation conditions to mimic pseudo zero gravity. It is of critical importance to be equipped with all the necessary ”instruments and infrastructure” to test contact dynamics, guidance, navigation and control using robotic manipulators and/or floating platforms. The Zero-G Laboratory at the University of Luxembourg has been designed and built to emulate scenarios such as rendezvous, docking, capture and other interaction scenarios between separate spacecraft. It is equipped with relevant infrastructure including nearly space-representative lightning conditions, motion capture system, epoxy floor, mounted rails with robots, capability to integrate on-board computers and mount large mock-ups. These capabilities allow researchers to perform a wide variety of experiments for unique orbital scenarios. It gives a possibility to perform hybrid emulations with robots with integrated hardware adding pre-modeled software components. The entire facility can be commanded and operated in real-time and ensures the true nature of contact dynamics in space. The Zero-G Lab also brings great opportunities for companies/startups in the space industry to test their products before launching the space missions. The article provides a compilation of best practices, know-how and recommendations learned while constructing the facility. It is addressed to the research community to act as a guideline to construct a similar facility.</p></div>","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468896723000939/pdfft?md5=06d7215e24b393e8e8a642a7b43c983a&pid=1-s2.0-S2468896723000939-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135568097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Risk reduction of tank explosion based on passivation of unusable propellant residues 基于无用推进剂残余物钝化的储罐爆炸风险降低
Journal of Space Safety Engineering Pub Date : 2023-10-06 DOI: 10.1016/j.jsse.2023.09.005
Valeriy Trushlyakov, Vladislav Urbansky
{"title":"Risk reduction of tank explosion based on passivation of unusable propellant residues","authors":"Valeriy Trushlyakov,&nbsp;Vladislav Urbansky","doi":"10.1016/j.jsse.2023.09.005","DOIUrl":"10.1016/j.jsse.2023.09.005","url":null,"abstract":"<div><p><span><span>To reduce the risk of explosion of propellant tanks of expended spacecraft and launch vehicles with </span>liquid rocket engines<span> in orbit, as well as in case of emergency situation, for example, loss of orientation, the Inter-Agency Space Debris Coordination Committee recommends passivation measures, including the discharge of residual liquid propellant and pressurant gas. In ANSYS-Fluent program complex possible initial positions of liquid propellant residues in a </span></span>spherical tank<span> at its rotation under conditions of low gravitational fields<span> are determined. The values of liquid propellant residues depending on their initial position in the spherical tank at opening of the drain line for discharge of gas–liquid mixture into the ambient space are determined. The concept of formation of two-phase flows of liquid propellant on the example of the spherical tank at tangential entry of compressed gas is offered. The relationship between the number of gas inlet points and the effectiveness of the developed method (expressed as the ratio of the mass of expelled liquid propellant to the mass of gas expended) is demonstrated. For instance, the use of 2 gas inlet points achieves an efficiency of up to 30 %, while employing 3 gas inlet points increases it to 89 %.</span></span></p></div>","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135605962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lifecycle mission safety for space nuclear systems 空间核系统生命周期任务安全
Journal of Space Safety Engineering Pub Date : 2023-10-05 DOI: 10.1016/j.jsse.2023.09.004
Alexander Q. Gilbert
{"title":"Lifecycle mission safety for space nuclear systems","authors":"Alexander Q. Gilbert","doi":"10.1016/j.jsse.2023.09.004","DOIUrl":"10.1016/j.jsse.2023.09.004","url":null,"abstract":"<div><p><span>The development of novel space nuclear systems by governments and companies can greatly enhance space exploration, commerce, and defense capabilities. However, the predominant safety framework for space nuclear in soft law and in practice focuses narrowly on launch safety. A Lifecycle Mission Safety Framework provides a new heuristic to guide system designers, mission planners, regulators, and international law for safety across the broad range of space nuclear applications. It expands safety goals beyond protection of the terrestrial population to workers and astronauts, as well as to activities in orbital space and </span>planetary surfaces. By defining mission phases and identifying safety considerations in each, this framework provides for proactive identification and management of risk.</p></div>","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134976561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triad concurrent approach among functional safety, cybersecurity and SOTIF 功能安全、网络安全和SOTIF的三合一并行方法
Journal of Space Safety Engineering Pub Date : 2023-10-04 DOI: 10.1016/j.jsse.2023.09.001
Tatsuya Kaneko, Shuhei Yamashita, Akira Takada, Misako Imai
{"title":"Triad concurrent approach among functional safety, cybersecurity and SOTIF","authors":"Tatsuya Kaneko,&nbsp;Shuhei Yamashita,&nbsp;Akira Takada,&nbsp;Misako Imai","doi":"10.1016/j.jsse.2023.09.001","DOIUrl":"10.1016/j.jsse.2023.09.001","url":null,"abstract":"<div><p>In the automotive industry<span><span>, the importance of systems is increasing, and systems become more complex and larger. It is essential to ensure safety of vehicles which has complex and large systems. With the increase in cybersecurity risks due to systemization and connectivity of cars, and the evolution of automated driving </span>technology<span>, it is essential to ensure the safety of connected and automated driving vehicles. In accordance with this automotive industry's changing context, the three standards have come out. Those are ISO 26262 on Functional Safety, ISO/SAE 21434 on Cybersecurity, and ISO 21448 on Safety Of The Intended Functionality related to automated driving. This paper describes the approach of integrated management of Functional Safety, Cybersecurity and Safety of the intended functionality.</span></span></p></div>","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134934270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI for space traffic management 用于空间交通管理的人工智能
Journal of Space Safety Engineering Pub Date : 2023-09-16 DOI: 10.1016/j.jsse.2023.08.007
Chiara Manfletti , Marta Guimarães , Claudia Soares
{"title":"AI for space traffic management","authors":"Chiara Manfletti ,&nbsp;Marta Guimarães ,&nbsp;Claudia Soares","doi":"10.1016/j.jsse.2023.08.007","DOIUrl":"10.1016/j.jsse.2023.08.007","url":null,"abstract":"<div><p>Morgan Stanley forecasts the space industry to top 1 trillion dollars by 2040. Of these 1 trillion dollars, 1.5 billion dollars are expected to be the contribution of the space situational market alone.</p><p><span>Satellite operators are already paying the price of space debris. Current approaches for collision avoidance and space traffic management face serious challenges, mainly: (1) Insufficient data and endangered </span>autonomy of action in space; (2) A high number of false alerts and a large uncertainty; (3) Lack of scalability and automation for an increasing number of assets.</p><p>This paper explores the potential of AI for Space and presents some of the advances made by Neuraspace in Space Traffic Management, including the analysis of conjunction data messages (CDMs), predicting uncertainties, and risk classification, and the economic benefits of new approaches.</p><p>Further, the paper addresses the need for a more active role of the private sector and an evolution of the role of the public sector to foster space sustainability and support the growth companies leading this effort.</p></div>","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135348904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of ETRSS-1 on-orbit performance and anomaly management ETRSS-1在轨性能分析及异常处理
Journal of Space Safety Engineering Pub Date : 2023-09-15 DOI: 10.1016/j.jsse.2023.08.006
Gadisa Dinaol
{"title":"Analysis of ETRSS-1 on-orbit performance and anomaly management","authors":"Gadisa Dinaol","doi":"10.1016/j.jsse.2023.08.006","DOIUrl":"10.1016/j.jsse.2023.08.006","url":null,"abstract":"<div><p>The Ethiopian remote sensing<span> microsatellite<span>, weighing 65 kg, was successfully launched into sun-synchronous orbit at an altitude of 628 km in 2019. The satellite has a three-year lifespan and employs a maneuver that minimizes the orbit perigee without adjusting the orbit apogee, resulting in an eccentric disposal orbit, with the perigee altitude<span> selected to ensure re-entry into the Earth’s atmosphere within 25 years. This study presents an overview of the ETRSS-1 satellite system, including its subsystems alongside the hardware utilized during their development, as well as an analysis of its on-orbit performance. Furthermore, the spacecraft’s electro-optical multispectral camera and its ability to capture remote sensing data while adhering to appropriate operational constraints, as well as its imaging mission techniques, various types of failure modes, and anomaly detection detection techniques, will be investigated.</span></span></span></p></div>","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135347775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Questions of fault liability: A case study analysis of in-orbit collisions with debris 过失责任问题:轨道上与碎片碰撞的案例研究分析
Journal of Space Safety Engineering Pub Date : 2023-09-14 DOI: 10.1016/j.jsse.2023.08.001
Andrea Capurso , Paolo Marzioli , Michela Boscia
{"title":"Questions of fault liability: A case study analysis of in-orbit collisions with debris","authors":"Andrea Capurso ,&nbsp;Paolo Marzioli ,&nbsp;Michela Boscia","doi":"10.1016/j.jsse.2023.08.001","DOIUrl":"10.1016/j.jsse.2023.08.001","url":null,"abstract":"<div><p>In 1972, the international community established a regime of liability for damages occurring in outer space based on ‘fault’. Fifty years later, the congested and polluted reality of the space environment has limited dramatically its effectiveness. Only in very few instances, filing a claim under such regime can reasonably ensure compensation to an injured satellite operator. The present paper describes different study cases where resorting to a fault-based liability claim appears problematic. Based on real conjunction assessment alerts, the authors look into various hypothetical scenarios from the perspective of a fictitious satellite operator, whose spacecraft was damaged by an accidental collision in orbit. The aim is to analyse the effective observability over orbital collisions involving small satellites and space debris (attributable or not) and to evaluate the real chances of obtaining compensation, from the operational and legal points of view. At the centre of this study, therefore, is the evaluation, in fact and in law, of the solidity of a potential claim against the perpetrator of the harm. To that end, the discourse takes into consideration the legal difficulties that are generally connected to fault-based liabilities in international law.</p><p>The definitional vagueness of the term ‘fault’, the necessity to identify a fault-standard, the proof of failure in the performance of a duty of care, are all elements to consider for filing a claim under the liability regime of 1972.</p><p>However, next to them, the space environment poses additional hurdles with regard to facts and evidence. Satellite operators do not always have the technological instruments to retrieve all the information related to orbital events, such as collisions. Moreover, a complete observability over in-orbit events can be hard to reach for several classes of spacecraft (e.g. small, nano- or pico-satellites). This is especially troublesome for establishing one of the essential elements of ‘fault’: the so-called “chain of causation”. The authors will present their views on how the uncertainties posed by the liability regime of 1972 can be dealt with from a legal and from a technical perspective. In addition, several possible legal solutions and recommendations for the upcoming years of in-orbit operations and space traffic management will be proposed at the end.</p></div>","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135347768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信