Zakawat Ali , Xiaochun Zhang , Palwasha Khan , Jie Li , Nai Zhang , Qixin Wang , Muhammad Yasin , Mazhar Amjad Gilani , Asim Laeeq Khan , Linglong Shan , Xiangping Zhang
{"title":"Self-assembled ILs-PVA micelle nanostructure impart the pervaporation membrane with high ethanol dehydration performance","authors":"Zakawat Ali , Xiaochun Zhang , Palwasha Khan , Jie Li , Nai Zhang , Qixin Wang , Muhammad Yasin , Mazhar Amjad Gilani , Asim Laeeq Khan , Linglong Shan , Xiangping Zhang","doi":"10.1016/j.memsci.2024.123481","DOIUrl":"10.1016/j.memsci.2024.123481","url":null,"abstract":"<div><div>Achieving strong interaction with the targeted composition and constructing abundant transport channels is crucial to obtain the pervaporation (PV) membrane with high selectivity and flux. Here, three ionic liquids (ILs) were screened out based on their relative selectivity and capacity targeting for bioethanol dehydration by COSMO-RS. The interaction energies analysis between ILs, EtOH, and H<sub>2</sub>O suggests that the ILs can form strong hydrogen bonds with water and disrupt the hydrogen bond in the EtOH–H<sub>2</sub>O azeotropic mixture, which is beneficial for improving the selectivity. Furthermore, driven by the multiple hydrogen bonds, electrostatic interactions, and van der Waals forces, ILs could self-assemble with polyvinyl alcohol (PVA) to fabricate the PV membrane with well-ordered micelle nanostructure, as its structure was revealed by MD simulations. The formation of the ILs-PVA micelle dramatically influenced membrane surface morphology, roughness, and water contact angle, providing an extra transport channel for the membrane. The optimal membrane (at the cmc point) exhibited a superior ethanol dehydration separation factor of 1627, along with a flux of 684 g/m<sup>2</sup>h at 50 °C. It can be expected that this novel self-assembled ILs-PVA micelle nanostructure strategy will find promising applications in other azeotropic mixture separation processes, like ethanol-ethyl acetate, water-butanol, etc.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123481"},"PeriodicalIF":8.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging contaminants removal through fluorine-doped carbon hollow fiber microfiltration membrane based on metal-free electro-Fenton","authors":"Yue Yang, Zhongcheng Yang, Xiong Liu, Lanyue Qi, Yujun Zhou, Zhigao Zhu, Junwen Qi, Jiansheng Li","doi":"10.1016/j.memsci.2024.123477","DOIUrl":"10.1016/j.memsci.2024.123477","url":null,"abstract":"<div><div>The emerging contaminants with high toxicity and bioaccumulation potentially threaten to human health, which was difficult removed by traditional biological treatment or membrane separation. In view of this, a novel type of fluorine (F)-doped carbon hollow fiber microfiltration membrane was prepared for realizing emerging contaminants removal through metal-free electro-Fenton. Herein, polyaniline (PANI) was used as a precursor for preparation of porous carbon membrane. The graphitic N and pyridinic N on porous carbon were used as the active sites for H<sub>2</sub>O<sub>2</sub> production and its further activation to ·OH, which realized metal-free electro-Fenton reaction. According to the results, the carbon nanotubes with F-PANI at the ratio of 1:1 and calcination temperature at 300 °C endowed the membrane moderate resistance and pure water permeability of 430 Ω and 48.51 L/(m<sup>2</sup> h bar), respectively. Importantly, the intensity of ·OH generation was further significant enhanced by introducing C–F bonding into the membrane. Therefore, the bisphenol A (BPA), sulfamethoxazole (SMZ) and atrazine (ATZ) removal rates were 92.63 %, 38.47 % and 27.05 %, respectively. For control group without bias, the removal rates of above contaminants were 0 % removal rates. Moreover, the membrane permeate loss by filtrating BPA, SMZ and ATZ were 0.13, 0.15 and 0.05, which were 0.20, 0.24 and 0.21 for control group.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123477"},"PeriodicalIF":8.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennifer Runhong Du , Jingfeng Zheng , Kailai Ma , Dechen Zhou , Chunliang Du
{"title":"Enhancing permeability of CA/MoS2 pervaporation membrane via electric field-induced orientation of MoS2 nanosheets","authors":"Jennifer Runhong Du , Jingfeng Zheng , Kailai Ma , Dechen Zhou , Chunliang Du","doi":"10.1016/j.memsci.2024.123478","DOIUrl":"10.1016/j.memsci.2024.123478","url":null,"abstract":"<div><div>The formation of a mixed matrix membrane by incorporating nanofillers into a polymer matrix is a potential strategy to improve the separation performance of polymer membranes. However, agglomeration and random arrangement of nanofillers in the mixed matrix membrane result in lower permeation flux increase than expected. In this work, mixed matrix membranes composed of cellulose acetate polymer and varying amounts of Molybdenum disulfide (MoS<sub>2</sub>) nanosheets as nanofillers were prepared, and an electric field was applied to induce the alignment of MoS<sub>2</sub> nanosheets in the membrane thickness direction. The effects of solution parameters including solvent type, MoS<sub>2</sub> content, and polymer concentration as well as electric field parameters i.e., frequency, strength, and action time on MoS<sub>2</sub> orientation were investigated using a stereoscopic microscope. The pervaporation desalination performance of mixed matrix membranes with randomly arranged MoS<sub>2</sub> and orientally arranged MoS<sub>2</sub> was assessed. At 2 wt% MoS<sub>2</sub> content, the mixed matrix membrane with orientally arranged MoS<sub>2</sub> exhibited a flux of 5.44 kg/(m<sup>2</sup>·h), representing a 25.9 % increase over the mixed matrix membrane with randomly arranged MoS<sub>2</sub>, while maintaining a salt rejection rate of over 99.9 %. The mixed matrix membrane demonstrated good long-term stability with consistent water flux and salt rejection during 120 h of operation.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123478"},"PeriodicalIF":8.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huimin Zhao , Bo Pang , Fujun Cui , Wanting Chen , Guihui Xie , Xuemei Wu , Ruishi Du , Chengbo Liu , Gaohong He
{"title":"Highly flexible SCOF proton exchange membrane reinforced with PTFE to enhance fuel cell power density","authors":"Huimin Zhao , Bo Pang , Fujun Cui , Wanting Chen , Guihui Xie , Xuemei Wu , Ruishi Du , Chengbo Liu , Gaohong He","doi":"10.1016/j.memsci.2024.123479","DOIUrl":"10.1016/j.memsci.2024.123479","url":null,"abstract":"<div><div>Sulfonated covalent organic frameworks (SCOFs) facilitate rapid proton conduction through densely ordered sulfonic acid groups, however, the brittleness of COFs self-supporting membranes often makes potential difficulty in fuel cell assembly and limits their power density. Herein, a highly flexible SCOF proton exchange membrane is developed through in-situ growth of a continuous BD(SO<sub>3</sub>H)<sub>2</sub>–COF microphase within porous PTFE networks. The strong hydrogen bonding between PTFE and BD(SO<sub>3</sub>H)<sub>2</sub>–COF contributes to the defect-free morphology of the BD(SO<sub>3</sub>H)<sub>2</sub>/PTFE membrane. The reinforce of PTFE network makes the membrane extremely high flexibility, achieving an elongation at break of 124.4 % even with a remarkably high SCOF mass proportion of 90 wt% (BD(SO<sub>3</sub>H)<sub>2</sub>/PTFE-0.9). This allows the membrane to be folded repeatedly, even in dry state. The swelling ratio in water at 80 °C is effectively restricted to 8.6 %, even with a high ion exchange capacity of 3.6 mmol g<sup>−1</sup> and a water uptake of 68.2 %. The densely ordered sulfonic acid groups in continuous BD(SO<sub>3</sub>H)<sub>2</sub>–COF microphase contribute to a high proton conductivity up to 249.2 mSꞏcm<sup>−1</sup> at 80 °C, approximately 1.5 folds that of Nafion 212. As a result, the BD(SO<sub>3</sub>H)<sub>2</sub>/PTFE-0.9 membrane achieves a fuel cell power density of 1195.3 mWꞏcm<sup>−2</sup> at 80 °C, along with a high open circuit voltage of 1.01 V, surpassing the-state-of-the-art COF-based proton exchange membranes. This work provides a novel strategy to fabricate COFs into flexible and size scalable membranes, enhancing the performance of fuel cells.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123479"},"PeriodicalIF":8.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Huang , Yu Qiang , Ruobing Yi , Shuai Wang , Shanshan Liang , Liang Chen
{"title":"“Network-trapped engineering” of graphene oxide membrane with stable structure","authors":"Yi Huang , Yu Qiang , Ruobing Yi , Shuai Wang , Shanshan Liang , Liang Chen","doi":"10.1016/j.memsci.2024.123473","DOIUrl":"10.1016/j.memsci.2024.123473","url":null,"abstract":"<div><div>Graphene oxide (GO) membranes are considered ideal candidates for efficient water treatment due to their unique two-dimensional structure and excellent sieving properties. However, the swelling of graphene oxide in aqueous solutions makes it still challenging for practical application. Inspired by the spider web, in this work, we developed a “network-trapped engineering” strategy to stabilize the interlayer spacings of GO membranes, which are defined as GS-Sr membranes. The sodium alginate (SA) and Sr<sup>2+</sup> were successfully fixed as the “network” and “rivets” in-between the GO nanosheets, respectively. Benefiting from the design of the network structure, the GS-Sr membranes exhibited excellent interlayer spacing stability. Meanwhile, this evenly distributed network structure in the GO laminates can further optimize the stacking of nanosheets, forming more orderly 2D confined nanochannels. As a result, the membranes exhibited superior salt/dye sieving performance, with a separation factor up to 179.13 for Na<sub>2</sub>SO<sub>4</sub>/CR, while still maintaining an outstanding water permeance of 70.14 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>. Furthermore, the GS-Sr membrane demonstrated stable separation performance in the long-term test, and the mechanical stability has also been enhanced in the mechanical test. Overall, compared with traditional simple cross-linking strategies, this strategy offers a new insight into fine-construction of two-dimensional nanochannels.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123473"},"PeriodicalIF":8.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Langhui Wu , Ye Liang , Bo Zhang , Shenzhen Cong , Shenyi Tang , Kangkang Jiang , Liping Luan , Zhi Wang , Xinlei Liu
{"title":"Post-synthetic modification of MOF UiO-66-NH₂ membranes for efficient methanol/organic separation","authors":"Langhui Wu , Ye Liang , Bo Zhang , Shenzhen Cong , Shenyi Tang , Kangkang Jiang , Liping Luan , Zhi Wang , Xinlei Liu","doi":"10.1016/j.memsci.2024.123475","DOIUrl":"10.1016/j.memsci.2024.123475","url":null,"abstract":"<div><div>The separation of MeOH/organic mixtures poses a significant challenge in the chemical industry. In this study, metal-organic framework UiO-66-NH<sub>2</sub> membranes prepared by a secondary solvothermal method were employed for MeOH/DMC, MeOH/Tol and MeOH/MTBE separation. The membrane performance was significantly boosted by post-synthetic modification with oxalyl chloride (OC), succinyl chloride (SC), and salicylaldehyde (SA). The modified UiO-66-NH<sub>2</sub>-OC and UiO-66-NH<sub>2</sub>-SC membranes displayed simultaneous improvement of the separation factors and MeOH fluxes. The modified UiO-66-NH<sub>2</sub>-SA membranes exhibited an order of magnitude enhancement of separation factors, with comparable MeOH fluxes. Specifically, separation factors of 3220 and 28,000 with MeOH fluxes of 1.18 kg m<sup>−2</sup> h<sup>−1</sup>and 1.03 kg m<sup>−2</sup> h<sup>−1</sup> for 5/95 wt% MeOH/Tol and 5/95 wt% MeOH/MTBE separation at 40 °C, respectively, were delivered by UiO-66-NH<sub>2</sub>-SA membranes. Moreover, the UiO-66-NH<sub>2</sub>-SA membranes demonstrated good stability over 120 h's evaluation. This study offers a promising post-synthetic approach and a class of membrane materials for efficient MeOH/organic separation.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123475"},"PeriodicalIF":8.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao Kong , Qi-Zheng Wang , Ye-Fei Wang , Hao-Ming Huo , Fang-Qi Kou , Shu-Bo Zhang , Jun Zhao , Dan Zhang , Liang Hao , Yan-Jiao Chang , Dong-En Zhang
{"title":"Synergistic manipulation of the polymorphic structure and hydrophilicity of PVDF membranes based on the in-situ esterification reaction to prepare anti-fouling PVDF membranes","authors":"Xiao Kong , Qi-Zheng Wang , Ye-Fei Wang , Hao-Ming Huo , Fang-Qi Kou , Shu-Bo Zhang , Jun Zhao , Dan Zhang , Liang Hao , Yan-Jiao Chang , Dong-En Zhang","doi":"10.1016/j.memsci.2024.123474","DOIUrl":"10.1016/j.memsci.2024.123474","url":null,"abstract":"<div><div>Improving the content of polar crystal phase and the hydrophilicity of PVDF membranes are proved the efficient ways to improve the enduringly anti-fouling ability of PVDF membranes. But synergistic manipulating the polymorphic structure and hydrophilicity of PVDF membranes is rarely reported so far. In this paper, the in-situ esterification reaction between styrene-maleic anhydride (SMA) and meglumine (MG) during nonsolvent induced phase separation (NIPS) process is found to simultaneously manipulate the polymorphic structure and hydrophilicity of PVDF membranes. The water contact angle of membranes is largely reduced from 95.8° to 31.2° with the increase in the MG adding amounts, proving that the hydrophilicity of PVDF membranes is notably improved. Moreover, the β-phase content is improved as the MG adding amounts increase due to the enhanced interactions between the –OH groups and the –CF<sub>2</sub> groups of PVDF through hydrogen bonds. As a result, a highly hydrophilic PVDF membrane with >90 % β-phase content is obtained. The durable antifouling testing reveals that the PVDF blend membranes possess lower flow decline ratio and higher flux recovery ratio compared with the virgin PVDF membranes, thus exhibiting better antifouling ability. The synergistic manipulation of hydrophilicity and crystalline phase of PVDF membranes might offer a paradigm shift in the design of high-performance separation membranes.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123474"},"PeriodicalIF":8.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaomeng Chu , Haoxi Zhang , Cuizhi Zhang , Runan Shao , Zitong Huang , Hongfu Lv , Shaojie Liu , Lei Liu , Nanwen Li , Song Zhao
{"title":"Aryl-ether-free polyphenylene-based anion exchange membranes incorporating N-cyclic quaternary ammoniums for enhanced alkaline fuel cell performance","authors":"Xiaomeng Chu , Haoxi Zhang , Cuizhi Zhang , Runan Shao , Zitong Huang , Hongfu Lv , Shaojie Liu , Lei Liu , Nanwen Li , Song Zhao","doi":"10.1016/j.memsci.2024.123455","DOIUrl":"10.1016/j.memsci.2024.123455","url":null,"abstract":"<div><div>Selecting appropriate polymer backbones is crucial for the advancement of anion exchange membranes (AEMs) that exhibit both high ionic conductivity and robust chemical stability. In this study, we synthesized rigid and chemically inert aryl-ether-free polyphenylene-based polymer backbones containing alkaline-resistant N-cyclic cations, i.e. dimethyl piperidinium (DMP) or 6-azonia-spiro[5.5]undecane (ASU), as high-performance AEMs. The procedure encompassed several key steps: superacid-catalyzed Friedel-Crafts polycondensation, bromomethylation, azidation, and Cu(I)-mediated azide-alkyne cycloaddition. The synthesized BP-ASU(DMP)-x copolymers demonstrated excellent film-forming capabilities to afford robust AEMs as compared to polyolefin-based counterparts. Owing to the significant incompatibility between the hydrophobic backbones and the hydrophilic cations, the BP-ASU(DMP)-x membranes exhibited a well-defined microphase-separated morphology, resulting in exceptionally high hydroxide conductivity, up to 157.2 mS cm<sup>−1</sup> at 80 °C in water. More importantly, BP-ASU-150 membrane exhibited no chemical degradation and a conductivity retention of >97 % when immersed in 1 M NaOH solution at 80 °C for 4000 h. Compared to the poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and polyolefin-based counterparts, the achieved outstanding alkaline stability is related to aryl-ether-free polyphenylene and alkali-stable N-cyclic cations, highlighting the importance of polymer backbones for AEM materials. Finally, all the polyphenylene-based AEMs with incorporated N-cyclic cations were assembled in single H<sub>2</sub>/O<sub>2</sub> AEMFCs, with the BP-ASU-150 membrane demonstrating a peak power density (PPD) of 860.4 mW cm<sup>−2</sup> at a current density of 1363 mA cm<sup>−2</sup>. We concluded that the BP-ASU(DMP) AEMs demonstrated superior performance across various metrics due to exceptional stability and robustness of polyphenylene polymers, highlighting their potential as backbones for high-performance AEM materials.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123455"},"PeriodicalIF":8.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yumei Zhao , Qingwei Gao , Xiaofei Xu , Chunyan Ma , Qikuan He , Yulin Min , Shuangliang Zhao
{"title":"Compromise mechanism of proton transfer in crown ether-based biomimetic proton exchange membranes: Insights from molecular dynamics simulations","authors":"Yumei Zhao , Qingwei Gao , Xiaofei Xu , Chunyan Ma , Qikuan He , Yulin Min , Shuangliang Zhao","doi":"10.1016/j.memsci.2024.123456","DOIUrl":"10.1016/j.memsci.2024.123456","url":null,"abstract":"<div><div>Proton exchange membrane fuel cells (PEMFCs) have emerged as a key research area due to their ability to convert various gaseous energy sources (such as hydrogen and methanol) into electrical energy with high efficiency and zero pollution. The design of the proton exchange membrane (PEM), which is the site for proton transfer, is critical. To explore the influence of characteristic functional groups on proton transfer mechanism in biomimetic proton exchange membranes, the crown ether structure was introduced into polymer backbone chains to mimic biological ion channels. The motion behaviors of proton were qualitatively characterized through molecular dynamics simulation. It was found that protons are strongest complexed in the best matching 18CO6-PEM case based on the analysis of RDF, residence time, interaction energy, and number of hydrogen bonds. The characteristic groups of biological proton channels with smaller or larger pores can help protons detach from the complexation under the action of an electric field. The proton transfer in crown-ether biomimetic proton exchange membranes is not just a single mechanism, but a compromise between two mechanisms in parallel. This work provides a new perspective on designing proton conduction membranes by embedding large ring motifs with intrinsic cavities and the key parameters required for establishing the proton transfer model.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123456"},"PeriodicalIF":8.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Song Song , Tianwen Wang , Jiaxiang Xia , Shiwen Bao , Xuexiao Hu , Wenjing Han , Yingzhuo Ma , Kunyan Sui , Jun Gao , Xueli Liu , Lei Jiang
{"title":"Ultra-low voltage modulated water-selective permeation for on-demand separation of oil/water emulsions based on the facilely prepared laminar membranes with high conductivity","authors":"Song Song , Tianwen Wang , Jiaxiang Xia , Shiwen Bao , Xuexiao Hu , Wenjing Han , Yingzhuo Ma , Kunyan Sui , Jun Gao , Xueli Liu , Lei Jiang","doi":"10.1016/j.memsci.2024.123461","DOIUrl":"10.1016/j.memsci.2024.123461","url":null,"abstract":"<div><div>Smart membranes with stimuli-modulated liquid-selective permeation hold promise for on-demand separation of oil/water mixtures, yet the facile preparation of membranes with sensitive and easily implemented responsiveness still remains a challenge. Herein, we present the sensitive manipulation of water-selective permeation using a weak electric field with ultra-low voltages and the resulting on-demand separation of oil-in-water emulsions on a facilely prepared laminar membrane. Fabricated <em>via</em> simple vacuum filtration, the MXene membrane possesses high conductivity and molecule-scaled transport channels, both of which facilitate the sensitive modulation. A voltage of just several negative volts (−4 V) can significantly switch the wetting and permeation of water on the membrane, which is distinctly lower than that previously reported (hundreds of volts and even several kV). In addition, the negatively charged membrane, under the applied bias, enhances the rejection of surfactant-wrapped oil droplets, preventing the fouling of material surfaces. Consequently, the separation of oil-in-water emulsions was achieved with high oil rejection rate (99 %) and considerable flux for a variety of oil types and percentages. Particularly for the crude oil/water mixtures, the rejection rate reached 99 % and the flux achieved 69.72 L m<sup>−2</sup> h<sup>−1</sup>. This study presents a novel example for achieving easy and economical smart separation of oil/water mixtures using highly conductive materials, and should also spark research in areas such as water purification, drug delivery, microfluidic valves, <em>etc</em>.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123461"},"PeriodicalIF":8.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}