Xiao-Yang Liu , Yubo Chen , Ying Bai , Longyi Lv , Wenfang Gao , Li Sun , Jinsong Liang , Zhijun Ren , Houyun Yang , Guangming Zhang
{"title":"Unraveling the impact of salinity on biofouling on ultrafiltration membranes: A spectroscopic and microscopic view","authors":"Xiao-Yang Liu , Yubo Chen , Ying Bai , Longyi Lv , Wenfang Gao , Li Sun , Jinsong Liang , Zhijun Ren , Houyun Yang , Guangming Zhang","doi":"10.1016/j.memsci.2024.123426","DOIUrl":"10.1016/j.memsci.2024.123426","url":null,"abstract":"<div><div>Biofouling significantly hampers the performance and longevity of ultrafiltration (UF) membranes employed in saline wastewater treatment. This research addresses a crucial knowledge gap by meticulously investigating the influence of salinity variations (0–10 g/L NaCl) on biofouling characteristics, utilizing advanced spectroscopic and microscopic techniques. Combined blocking models elucidated the evolution of fouling mechanisms under varying salinity conditions. Higher salinity levels promoted cake layer formation, potentially circumventing initial fouling stages observed under lower salinity conditions. Quantification of confocal laser scanning microscopy images revealed a denser, thinner, and less heterogeneous cake layer at high salinity, composed of proteins, nucleic acids, and α-polysaccharides. The relatively high abundance of polysaccharides may contribute to maintaining osmotic pressure and bacterial cell viability. Moreover, the integration of the confocal Raman mapping technique and non-negative matrix factorization analysis was innovatively applied to characterize the biofouling layer, identifying the important role of carotenoids within the layer. Carotenoids were found to be more abundant in the upper regions of the biofouling layer formed at high salinity, potentially scavenging the reactive oxygen species within bacterial cells. In conclusion, this investigation offers a comprehensive understanding of the salinity-dependent alterations in the chemical composition and spatial structure of the membrane fouling layer. The findings may facilitate the development of targeted mitigation strategies to combat membrane biofouling in saline wastewater treatment applications.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123426"},"PeriodicalIF":8.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhaohuan Mai , Yongxuan Shi , Bowen Li , Sheng Han , Yingxin Sun , Haochen Zhu , Ping Xu , Mengyang Hu , Tomohisa Yoshioka , Hideto Matsuyama
{"title":"Multiscale insights into polyamide membrane fouling during reverse osmosis of rare earth wastewater","authors":"Zhaohuan Mai , Yongxuan Shi , Bowen Li , Sheng Han , Yingxin Sun , Haochen Zhu , Ping Xu , Mengyang Hu , Tomohisa Yoshioka , Hideto Matsuyama","doi":"10.1016/j.memsci.2024.123445","DOIUrl":"10.1016/j.memsci.2024.123445","url":null,"abstract":"<div><div>The rare earth elements (REEs) industrial wastewater is characterized by high ammonium nitrogen and low-strength organic compounds. Reverse osmosis (RO) process is effective for the REEs wastewater treatment. However, membrane fouling deteriorated the RO process. In this work, the fouling mechanism during RO process of REEs wastewater was elucidated via multiscale methods. A series of bench-scale fouling tests with simulated REEs wastewater containing high NH4<sup>+</sup>–N and different concentrations of 2-ethylhexyl phosphonic acid mono-(2-ethylhexyl) ester (P507) were performed with a commercial RO membrane to evaluate the fouling extent of the RO process. A critical P507 concentration (0.25 mg L<sup>−1</sup>) was observed where the fouling pattern changed qualitatively. When the P507 concentration was lower than 0.25 mg L<sup>−1</sup>, the relative flux increased and the membrane surface became more hydrophilic. When P507 reached this critical point, severe fouling occurred accompanied with a more hydrophobic membrane surface. Multiscale simulations [<em>i.e.</em>, molecular dynamics (MD) and dissipative particle dynamics (DPD)] revealed that the fouling layer network varied with P507 concentration. This work provides in-depth insights into membrane fouling mechanism in the REEs wastewater, and has enlightening significance for fouling control strategies and the innovation of anti-fouling membrane materials.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123445"},"PeriodicalIF":8.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of lanthanides on the structure and oxygen permeability of Ti-doped dual-phase membranes","authors":"Chao Zhang, Zaichen Xiang, Lingyong Zeng, Peifeng Yu, Kuan Li, Kangwang Wang, Longfu Li, Rui Chen, Huixia Luo","doi":"10.1016/j.memsci.2024.123446","DOIUrl":"10.1016/j.memsci.2024.123446","url":null,"abstract":"<div><div>The trade-off effect of the oxygen permeability and stability of oxygen transport membranes (OTMs) still exists in working atmospheres containing CO<sub>2</sub>. Herein, we reported a new series of 60 wt%Ce<sub>0.9</sub>Ln<sub>0.1</sub>O<sub>2-δ</sub>-40 wt%Ln<sub>0.6</sub>Sr<sub>0.4</sub>Fe<sub>0.9</sub>Ti<sub>0.1</sub>O<sub>3-δ</sub> (CLnO-LnSFTO, Ln = La, Pr, Nd, Sm, Gd, Tb) dual-phase OTMs by selecting different Ln elements based on the reported highly stable Ti-doped CPrO-PrSFTO. The effects of different Ln elements on the structure and oxygen permeability of Ti-doped dual-phase OTMs were systematically studied. Basically, as the atomic number of Ln elements increases, the unit cell parameters of both the fluorite phase and the perovskite phase become smaller. The unit cell volume and spatial symmetry of the perovskite phase are reduced, resulting in a reduction in oxygen permeability. The optimal CLaO-LaSFTO showed <span><math><mrow><msub><mi>J</mi><msub><mi>O</mi><mn>2</mn></msub></msub></mrow></math></span> of 0.60 and 0.54 mL min<sup>−1</sup> cm<sup>−2</sup> with He and CO<sub>2</sub> sweeping at 1000 °C, respectively. In addition, all CLnO-LnSFTO OTMs could work for more than 100 h with no significant performance degradation in a CO<sub>2</sub> atmosphere, maintaining excellent stability. This work explores candidate OTM materials for CO<sub>2</sub> capture and oxygen separation, as well as provides some ideas for addressing the trade-off effect.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123446"},"PeriodicalIF":8.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanoconfined catalytic membranes for EfOM fouling mitigation: An intelligent “pore-centric” cleaning strategy","authors":"Wenjun Wu, Jin Guo, Wenhui Wang, Xiaomeng Yu, Yufei Wang, Tong Zhou, Guangshuo Yin","doi":"10.1016/j.memsci.2024.123444","DOIUrl":"10.1016/j.memsci.2024.123444","url":null,"abstract":"<div><div>This study investigated the effectiveness of the nanoconfined catalytic membrane (NCCM), fabricated by nitrogen-doped carbon nanotubes (NCNT) incorporated with graphene oxide membrane (NCNT@GO-M), in mitigating fouling caused by effluent organic matter (EfOM). Compared to conventional catalytic membranes (NRCM) that lack precise spatial design and prepared with only NCNT, NCCM exhibits a unique advantage by preferentially retaining and adsorbing protein-like substances in EfOM during the fouling formation process, forming a cake layer that effectively mitigates pore blockage from irreversible foulants. Furthermore, the ordered nanoconfined structure of NCCM facilitates an intelligent “pore-centric” hierarchical degradation strategy based on the molecular size of EfOM, preferentially removing irreversible foulants caused by fulvic acid-like and low molecular weight protein-like substances. The results demonstrated effective preservation of catalytic sites by the NCCM’s advanced nanoconfined configuration and a 1.6-fold increase in the mass transfer rate of peroxymonosulfate (PMS) compared to NRCM, synergistically promoting hydroxyl radical (•OH) enrichment, resulting in rapid EfOM degradation kinetics. Additionally, chemical cleaning almost completely eliminated irreversible fouling, restoring the NCCM to near its original flux. Overall, this study sheds light on the fouling mitigation mechanisms of NCCM, aiding their tailored design and application in targeted wastewater treatment.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123444"},"PeriodicalIF":8.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jieun Kang , Seung Hwan Kim , Young Kyu Hwang , Bao Tran Duy Nguyen , Jihoon Kim , Jeong F. Kim
{"title":"Scalable membrane-assisted ion exchange (MEM-IE) strategy for organic acid purification in biorefinery process","authors":"Jieun Kang , Seung Hwan Kim , Young Kyu Hwang , Bao Tran Duy Nguyen , Jihoon Kim , Jeong F. Kim","doi":"10.1016/j.memsci.2024.123442","DOIUrl":"10.1016/j.memsci.2024.123442","url":null,"abstract":"<div><div>The transition towards a carbon-neutral society necessitates radical approaches in the bio-refinery pipeline, particularly in the production of organic acids. The current downstream process from a dilute fermentation broth is limited by the extensive use of acids and bases, along with heavy reliance on energy-intensive distillation. In this work, we propose an entirely membrane-based process to purify organic acids (e.g., gluconic acid) from a crude solution of catalytic dehydrogenation of glucose. To facilitate downstream purification, we introduce an innovative membrane-assisted ion exchange (MEM-IE) strategy, which is a scalable process that can protonate ionic compounds entirely in the solution phase. Instead of a solid ion exchange resin, a bulky yet soluble acidification agent is used to protonate the target compound, which can be easily separated via a size exclusion membrane. We selected non-toxic poly (4-styrene sulfonic acid) (H-PSS, 75 kDa) as the acidification agent to selectively protonate gluconate ions and to enable facile fractionation. The proposed MEM-IE strategy can overcome the scale-up limitation of traditional solid ion exchange resins and can be applied to many types of ionic compounds. The versatility of the proposed process was also demonstrated on formate and lactate compounds. A techno-economic evaluation using the Verberne cost model showed that the proposed process achieves an 80 % reduction in energy consumption compared to the fermentation-based process, and the return on investment (ROI) of a 330 ton-per-day plant was less than a year. The proposed membrane-based process for the purification of organic acids, particularly the MEM-IE strategy, offers a sustainable and energy-efficient downstream separation platform.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123442"},"PeriodicalIF":8.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yiman He , Zenghao Yue , Wangxi Fang , Zilin Zhao , Yuzhang Zhu , Jian Jin
{"title":"Unveiling the pore size change in polyamide membrane using aggregation induced emission","authors":"Yiman He , Zenghao Yue , Wangxi Fang , Zilin Zhao , Yuzhang Zhu , Jian Jin","doi":"10.1016/j.memsci.2024.123434","DOIUrl":"10.1016/j.memsci.2024.123434","url":null,"abstract":"<div><div>Polyamide (PA) membranes play a crucial role in nanofiltration and reverse osmosis separations, while their pore size is primary to determine the separation performance. Current methods for pore size analysis, such as atomic force microscopy (AFM), positron annihilation spectroscopy (PAS), and the filtration experiment of neutral molecules are time-consuming and lack real-time capabilities. This limitation hinders in-situ monitoring of pore size dynamics under various operating conditions. Therefore, a rapid and real-time method is highly desirable for pore size analysis. This work presents a novel approach for real-time detection of pore size variations in PA membranes under different solvent conditions. It utilizes aggregation-induced emission (AIE) with tetraphenylethylene (TPE) groups covalently linked to the PA polymer chain during interfacial polymerization using 1-(4-Aminophenyl)-1,2,2-triphenylethene as a co-monomer. Fluorescence intensity of the PA membrane serves as an indicator of the confined state of the TPE molecules within the polymer network, thereby reflecting pore size changes under various conditions. The accuracy of the AIE-based approach is validated through complementary analyses such as small-angle X-ray scattering (SAXS) and rejection of dye molecules. The observed consistency between fluorescence variations in the PA membrane and pore size changes under different solvent conditions confirms the effectiveness of this method. This work provides a valuable visual tool for in-situ monitoring of pore size dynamics in polyamide membranes.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"714 ","pages":"Article 123434"},"PeriodicalIF":8.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fariba Oulad , Ali Akbar Zinatizadeh , Sirus Zinadini , Amir Razmjou
{"title":"An efficient approach in water desalination using high flux induced magnetic-field hydroxyl-functionalized MgFe2O4 /CA RO membranes with organic/inorganic fouling control capability","authors":"Fariba Oulad , Ali Akbar Zinatizadeh , Sirus Zinadini , Amir Razmjou","doi":"10.1016/j.memsci.2024.123437","DOIUrl":"10.1016/j.memsci.2024.123437","url":null,"abstract":"<div><div>Reverse osmosis (RO) membranes are crucial for water purification and desalination, facing challenges like balancing permeate flux and rejection, dealing with membrane fouling, and chlorine resistance. This study focuses on developing new membranes using cellulose acetate (CA) polymers and magnetic nanoparticles of magnesium ferrite (MgFe<sub>2</sub>O<sub>4</sub>) and hydroxyl-functionalized magnesium ferrite (OH–MgFe<sub>2</sub>O<sub>4</sub>) through a phase inversion method, with and without the presence of a magnetic field, to address the limitations of RO membranes. This study conducted a unique experiment where magnetic nanoparticles migrated to the membrane surface and underwent phase exchange in the coagulation bath under the influence of a 2.0 T magnetic field. As a result, the magnetic nanoparticles were arranged in a specific pattern and evenly spread across the membrane surface, enhancing the membrane's surface characteristics and hydrophilic properties. Furthermore, the flux of the synthesized membranes experienced an increase when exposed to the magnetic field, while maintaining a consistently high rejection rate. An evaluation was conducted on the membranes' resistance to organic fouling from bovine serum albumin (BSA), inorganic fouling from scaling, and the combined effects of BSA and scaling. Based on the findings, the membranes showed a notable enhancement in their anti-fouling properties, particularly when exposed to a magnetic field. An assessment was conducted on the resistance to chlorine for both the standard and improved membranes. Comparing the flux and rejection of the membranes before and after chlorine exposure revealed a minor variation, suggesting the membrane's ability to resist surface damage from chlorine. Hence, through the creation of innovative MgFe<sub>2</sub>O<sub>4</sub>/CA and OH–MgFe<sub>2</sub>O<sub>4</sub>/CA membranes, the identified constraints of RO membranes were effectively addressed. One of the synthesized RO membranes, OH–MgFe<sub>2</sub>O<sub>4</sub>/CA, demonstrated superior performance in permeate flux, rejection, anti-fouling, and chlorine resistance when compared to MgFe<sub>2</sub>O<sub>4</sub>/CA membranes. Furthermore, the stability of the synthesized membranes was assessed through tensile strength testing, which confirmed the preservation of the membrane structure.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123437"},"PeriodicalIF":8.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoxia Sun , Bin Wang , Qingshan Liu , Congjie Gao , Jia Xu
{"title":"Chloride-salt separation type nanofiltration membranes for efficient crude salt refinement","authors":"Xiaoxia Sun , Bin Wang , Qingshan Liu , Congjie Gao , Jia Xu","doi":"10.1016/j.memsci.2024.123441","DOIUrl":"10.1016/j.memsci.2024.123441","url":null,"abstract":"<div><div>Application of unrefined crude salt not only leads to a serious equipment scaling and a low product quality, but also increases operational risks and poses health hazards. Therefore, it is essential to refine crude salt prior to its use. However, traditional methods of crude salt refinement are energy-intensive and probably produce additional chemical by-products. In this work, membrane technology was used to accomplish the refinement of crude salt due to its unique characteristics, such as environmentally friendly and lower energy consumption. To improve the separation performance, the membranes were fabricated by simply adjusting the aqueous monomer concentration. For single-salt feed, the membrane (M<sub>10</sub>) prepared with a high ratio of 10 exhibited excellent salt rejection due to the formation of a thicker and denser PA layer. And it owned a superior MgCl<sub>2</sub>/NaCl selectivity of ∼22.0, demonstrating that the membrane can achieve outstanding selectivity for mono-/divalent ions. The selectivity of Mg<sup>2+</sup>/Na<sup>+</sup> increased to ∼23.5 for bi-salt feed and further improved to 66.2 for multi-salt feed due to the stronger charge shielding effect. Most importantly, the membrane was also successfully applied in the refinement of crude salt. When using crude salt (NaCl 30 g/L, purity 0.90) as feed, the M<sub>10</sub> exhibited both excellent retention of bivalent ions and permeation of univalent ions, resulting in the corresponding Mg<sup>2+</sup>/Na<sup>+</sup> selectivity up to ∼251.6 and the tremendous enhancement in the Na <sup>+</sup> purity of ∼0.997. This work offers a feasible strategy for crude salt refinement, and could expand to some other potential applications such as resource utilization in the salinization industry and zero-liquid discharge of industrial wastewater.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123441"},"PeriodicalIF":8.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoling Xu , Bin Peng , Yanqiu Wang , Yaqi Dong , Hui Wang , Wentong Chen , Yan Liu , Qiang Zhang
{"title":"Fabrication of POSS-centered polyester network as high anti-chlorine and anti-fouling separation layer of membrane via successive Photo-ATRP and interfacial polymerization for molecular separation","authors":"Xiaoling Xu , Bin Peng , Yanqiu Wang , Yaqi Dong , Hui Wang , Wentong Chen , Yan Liu , Qiang Zhang","doi":"10.1016/j.memsci.2024.123432","DOIUrl":"10.1016/j.memsci.2024.123432","url":null,"abstract":"<div><div>The incorporation of polyhedral oligomeric sesquisiloxane (POSS), a distinctive nanoparticle, into the membrane separation layer represents an effective strategy for enhancing the chlorine resistance of membranes. This modification contributes to both the durability of the membrane and its separation efficiency. However, POSS is easy to agglomerate, which affects the separation performance of the membrane. In this paper, POSS-centered polyhydroxy polymer (OMEPOSS-P(GMA-NMDG)) was synthesized <em>via</em> photo-induced atom transfer radical polymerization and used as water-soluble monomer to prepare polyester separation layer on porous substrates through interfacial polymerization with trimelanoyl chloride. The obtained POSS-centered polyester membrane exhibits a high dye removal rate exceeding 99 %, and it can realize the screening of dye molecules with different molecular weight and different charge. Notably, the membrane demonstrates excellent chlorine resistance, maintaining effective separation efficiency after exposure to sodium hypochlorite solutions at concentrations of 10 000 ppm for 96 h and 1000 ppm for 7 days. It is worth noting that the membrane showed high anti-fouling performance. This method provides a useful guideline for the development of chlorine-resistant and anti-fouling separation membranes.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123432"},"PeriodicalIF":8.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fei Shi , Qinghua Li , Ye Yuan , Yi Yang , Xingzhong Cao , Menglong Sheng , Song Zhao , Zhi Wang
{"title":"Engineering the ultrathin polyamide nanofilm featuring high free volume via interfacial polymerization for efficient CO2 capture","authors":"Fei Shi , Qinghua Li , Ye Yuan , Yi Yang , Xingzhong Cao , Menglong Sheng , Song Zhao , Zhi Wang","doi":"10.1016/j.memsci.2024.123443","DOIUrl":"10.1016/j.memsci.2024.123443","url":null,"abstract":"<div><div>Interfacial polymerization (IP) has been received as an indispensable technology to fabricate thin-film composite (TFC) membranes for gas separation because of the simple and designable process. However, achieving the highly permeable polyamide (PA) TFC membrane for CO<sub>2</sub> capture <em>via</em> the IP technique remains challenging. Herein, a highly CO<sub>2</sub>-permeable PA TFC membrane was synthesized by the polycondensation of N, N-Bis [3-(methylamino) propyl]methylamine (BMAPAm) and trimesoyl chloride (TMC). The ultrathin (∼47 nm) PA TFC membrane featuring with high free volume exhibited excellent CO<sub>2</sub> permeance with moderate CO<sub>2</sub>/N<sub>2</sub> selectivity. The causes of this desired structure were systematically investigated from the aspects of monomer supply and molecular structure, in which the 3,3′-diamino-N-methyldipropylamine (DNMDAm) was used as a comparison. The results illustrated the underlying monomer-structure-performance relationships of IP-made membranes, demonstrating the solid potential of the IP technology specifically toward high-performance CO<sub>2</sub> capture membranes. Finally, a pilot-scale continuous membrane fabrication process was demonstrated.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123443"},"PeriodicalIF":8.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}