R. Maraia, Sebastian Springer, Teemu Härkönen, M. Simon, H. Haario
{"title":"Bayesian synthetic likelihood for stochastic models with applications in mathematical finance","authors":"R. Maraia, Sebastian Springer, Teemu Härkönen, M. Simon, H. Haario","doi":"10.3389/fams.2023.1187878","DOIUrl":"https://doi.org/10.3389/fams.2023.1187878","url":null,"abstract":"We present a Bayesian synthetic likelihood method to estimate both the parameters and their uncertainty in systems of stochastic differential equations. Together with novel summary statistics the method provides a generic and model-agnostic estimation procedure and is shown to perform well even for small observational data sets and biased observations of latent processes. Moreover, a strategy for assessing the goodness of the model fit to the observational data is provided. The combination of the aforementioned features differentiates our approach from other well-established estimation methods. We would like to stress the fact that the algorithm is pleasingly parallel and thus well suited for implementation on modern computing hardware. We test and compare the method to maximum likelihood, filtering and transition density estimation methods on a number of practically relevant examples from mathematical finance. Additionally, we analyze how to treat the lack-of-fit in situations where the model is biased due to the necessity of using proxies in place of unobserved volatility.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46446836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MAD (about median) vs. quantile-based alternatives for classical standard deviation, skewness, and kurtosis","authors":"E. Pinsky, S. Klawansky","doi":"10.3389/fams.2023.1206537","DOIUrl":"https://doi.org/10.3389/fams.2023.1206537","url":null,"abstract":"In classical probability and statistics, one computes many measures of interest from mean and standard deviation. However, mean, and especially standard deviation, are overly sensitive to outliers. One way to address this sensitivity is by considering alternative metrics for deviation, skewness, and kurtosis using mean absolute deviations from the median (MAD). We show that the proposed measures can be computed in terms of the sub-means of the appropriate left and right sub-ranges. They can be interpreted in terms of average distances of values of these sub-ranges from their respective medians. We emphasize that these measures utilize only the first-order moment within each sub-range and, in addition, are invariant to translation or scaling. The obtained formulas are similar to the quantile measures of deviation, skewness, and kurtosis but involve computing sub-means as opposed to quantiles. While the classical skewness can be unbounded, both the MAD-based and quantile skewness always lies in the range [−1, 1]. In addition, while both the classical kurtosis and quantile-based kurtosis can be unbounded, the proposed MAD-based alternative for kurtosis lies in the range [0, 1]. We present a detailed comparison of MAD-based, quantile-based, and classical metrics for the six well-known theoretical distributions considered. We illustrate the practical utility of MAD-based metrics by considering the theoretical properties of the Pareto distribution with high concentrations of density in the upper tail, as might apply to the analysis of wealth and income. In summary, the proposed MAD-based alternatives provide a universal scale to compare deviation, skewness, and kurtosis across different distributions.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42514155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mathematical modeling for the control of fly-borne mastitis disease in cattle","authors":"Moses Olayemi Adeyemi, T. O. Oluyo","doi":"10.3389/fams.2023.1171157","DOIUrl":"https://doi.org/10.3389/fams.2023.1171157","url":null,"abstract":"Several diseases cause losses in cattle farming, especially in the dairy industry among which mastitis disease (Bovine mastitis) is the leading cause of health and economic damages globally as it results in animals' ill health and reduced quality and quantity of milk produced by infected cows. Some mathematical studies have been conducted that focused on mastitis transmission from one udder-quarter to another in an infected cow, even though clinical studies established the cow–cow and flies–cow transmissions. The present study, therefore, proposed a mathematical model for the control of mastitis disease in cattle in the presence of flies as vectors. The formulated model was shown to have non-negative solutions in feasible regions for both cattle and flies populations. Furthermore, the model has a stable disease-free equilibrium if the sum of the effective reproduction numbers for cattle–cattle and fly–cattle transmissions (ℜch and ℜch) is less than unity, and there is a possibility of multiple endemic equilibria if otherwise. The numerical results indicated that the infectious populations can be reduced if the rates of the control parameters are increased, thereby curtailing or eradicating mastitis in the cattle population.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44638763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. E. Mukiawa, Yasir Khan, Hamdan Al Sulaimani, M. Omaba, C. Enyi
{"title":"Thermal Timoshenko beam system with suspenders and Kelvin–Voigt damping","authors":"S. E. Mukiawa, Yasir Khan, Hamdan Al Sulaimani, M. Omaba, C. Enyi","doi":"10.3389/fams.2023.1153071","DOIUrl":"https://doi.org/10.3389/fams.2023.1153071","url":null,"abstract":"In the present study, we consider a thermal-Timoshenko-beam system with suspenders and Kelvin–Voigt damping type, where the heat is given by Cattaneo's law. Using the existing semi-group theory and energy method, we establish the existence and uniqueness of weak global solution, and an exponential stability result. The results are obtained without imposing the equal-wave speed of propagation condition. 2010 MSC: 35D30, 35D35, 35B35.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42966311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Randy L. Caga-anan, Jead M. Macalisang, John Lemuel M. Dalisay, M. Raza, J. Martinez, J. P. Arcede
{"title":"Optimal vaccination control for COVID-19 in a metapopulation model: a case of the Philippines","authors":"Randy L. Caga-anan, Jead M. Macalisang, John Lemuel M. Dalisay, M. Raza, J. Martinez, J. P. Arcede","doi":"10.3389/fams.2023.1154634","DOIUrl":"https://doi.org/10.3389/fams.2023.1154634","url":null,"abstract":"We investigate a contextual problem of how to distribute a limited supply of vaccines over a period of time in a country where different regions have its own vaccination capacities. Considering that daily vaccination will affect future disease progression, we aim to find a distribution strategy over time that can minimize the total infection and implementation costs. Lagrangian and Eulerian migrations connect our multi-patch COVID-19 model, and vaccination is added as a control measure. An optimal control problem with an isoperimetric constraint is formulated and solved using the Adapted Forward–Backward Sweep Method. In distributing 5 million vaccines in 50 days, simulations showed that the optimal control strategy could lead to a difference of reducing two hundred thousand infections in just one region.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43979927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Controllability of Hilfer fractional Langevin evolution equations","authors":"Haihua Wang, Junhua Ku","doi":"10.3389/fams.2023.1191661","DOIUrl":"https://doi.org/10.3389/fams.2023.1191661","url":null,"abstract":"The existence of fractional evolution equations has attracted a growing interest in recent years. The mild solution of fractional evolution equations constructed by a probability density function was first introduced by El-Borai. Inspired by El-Borai, Zhou and Jiao gave a definition of mild solution for fractional evolution equations with Caputo fractional derivative. Exact controllability is one of the fundamental issues in control theory: under some admissible control input, a system can be steered from an arbitrary given initial state to an arbitrary desired final state. In this article, using the (α, β) resolvent operator and three different fixed point theorems, we discuss the control problem for a class of Hilfer fractional Langevin evolution equations. The exact controllability of Hilfer fractional Langevin systems is established. An example is also discussed to illustrate the results.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45316182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Egbelowo, J. Munyakazi, P. Dlamini, F. Osaye, S. Simelane
{"title":"Modeling visceral leishmaniasis and tuberculosis co-infection dynamics","authors":"O. Egbelowo, J. Munyakazi, P. Dlamini, F. Osaye, S. Simelane","doi":"10.3389/fams.2023.1153666","DOIUrl":"https://doi.org/10.3389/fams.2023.1153666","url":null,"abstract":"The co-infection of visceral leishmaniasis (VL) and tuberculosis (TB) patients pose a major public health challenge. In this study, we develop a mathematical model to study the transmission dynamics of VL and TB co-infection by first analyzing the VL and TB sub-models separately. The dynamics of these sub-models and the full co-infection model are determined based on the reproduction number. When the associated reproduction number (R1) for the TB-only model and (R2) for the VL-only are less than unity, the model exhibits backward bifurcation. If max{R1,R2}=R1, then the TB-VL co-infection model exhibits backward bifurcation for values of R1. Furthermore, if max{R1,R2}=R2, and by choosing the transmission probability, βL as the bifurcation parameter, then the phenomenon of backward bifurcation occurs for values of R2. Consequently, the full model, whose associated reproduction number is R0, also exhibits backward bifurcation when R0=1. The equilibrium points and their stability for the models are determined and analyzed based on the magnitude of the respective reproduction numbers. Finally, some numerical simulations are presented to show the reliability of our theoretical results.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42517867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data augmentation using generative adversarial networks for images and biomarkers in medicine and neuroscience","authors":"Maizan Syamimi Meor Yahaya, J. Teo","doi":"10.3389/fams.2023.1162760","DOIUrl":"https://doi.org/10.3389/fams.2023.1162760","url":null,"abstract":"The fields of medicine and neuroscience often face challenges in obtaining a sufficient amount of diverse data for training machine learning models. Data augmentation can alleviate this issue by artificially synthesizing new data from existing data. Generative adversarial networks (GANs) provide a promising approach for data augmentation in the context of images and biomarkers. GANs can synthesize high-quality, diverse, and realistic data that can supplement real data in the training process. This study provides an overview of the use of GANs for data augmentation in medicine and neuroscience. The strengths and weaknesses of various GAN models, including deep convolutional GANs (DCGANs) and Wasserstein GANs (WGANs), are discussed. This study also explores the challenges and ways to address them when using GANs for data augmentation in the field of medicine and neuroscience. Future works on this topic are also discussed.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48210856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}