模拟内脏利什曼病和肺结核合并感染动力学

IF 1.3 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
O. Egbelowo, J. Munyakazi, P. Dlamini, F. Osaye, S. Simelane
{"title":"模拟内脏利什曼病和肺结核合并感染动力学","authors":"O. Egbelowo, J. Munyakazi, P. Dlamini, F. Osaye, S. Simelane","doi":"10.3389/fams.2023.1153666","DOIUrl":null,"url":null,"abstract":"The co-infection of visceral leishmaniasis (VL) and tuberculosis (TB) patients pose a major public health challenge. In this study, we develop a mathematical model to study the transmission dynamics of VL and TB co-infection by first analyzing the VL and TB sub-models separately. The dynamics of these sub-models and the full co-infection model are determined based on the reproduction number. When the associated reproduction number (R1) for the TB-only model and (R2) for the VL-only are less than unity, the model exhibits backward bifurcation. If max{R1,R2}=R1, then the TB-VL co-infection model exhibits backward bifurcation for values of R1. Furthermore, if max{R1,R2}=R2, and by choosing the transmission probability, βL as the bifurcation parameter, then the phenomenon of backward bifurcation occurs for values of R2. Consequently, the full model, whose associated reproduction number is R0, also exhibits backward bifurcation when R0=1. The equilibrium points and their stability for the models are determined and analyzed based on the magnitude of the respective reproduction numbers. Finally, some numerical simulations are presented to show the reliability of our theoretical results.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling visceral leishmaniasis and tuberculosis co-infection dynamics\",\"authors\":\"O. Egbelowo, J. Munyakazi, P. Dlamini, F. Osaye, S. Simelane\",\"doi\":\"10.3389/fams.2023.1153666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The co-infection of visceral leishmaniasis (VL) and tuberculosis (TB) patients pose a major public health challenge. In this study, we develop a mathematical model to study the transmission dynamics of VL and TB co-infection by first analyzing the VL and TB sub-models separately. The dynamics of these sub-models and the full co-infection model are determined based on the reproduction number. When the associated reproduction number (R1) for the TB-only model and (R2) for the VL-only are less than unity, the model exhibits backward bifurcation. If max{R1,R2}=R1, then the TB-VL co-infection model exhibits backward bifurcation for values of R1. Furthermore, if max{R1,R2}=R2, and by choosing the transmission probability, βL as the bifurcation parameter, then the phenomenon of backward bifurcation occurs for values of R2. Consequently, the full model, whose associated reproduction number is R0, also exhibits backward bifurcation when R0=1. The equilibrium points and their stability for the models are determined and analyzed based on the magnitude of the respective reproduction numbers. Finally, some numerical simulations are presented to show the reliability of our theoretical results.\",\"PeriodicalId\":36662,\"journal\":{\"name\":\"Frontiers in Applied Mathematics and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fams.2023.1153666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2023.1153666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

内脏利什曼病(VL)和肺结核(TB)患者的共同感染对公共卫生构成了重大挑战。在本研究中,我们首先分别分析了VL和TB子模型,建立了一个数学模型来研究VL和结核病共同感染的传播动力学。这些子模型和完全共感染模型的动力学是基于繁殖数量确定的。当仅TB模型的相关再现数(R1)和仅VL模型的相关复制数(R2)小于1时,该模型表现出后向分叉。如果max{R1,R2}=R1,则TB-VL共感染模型对于R1的值表现出后向分叉。此外,如果max{R1,R2}=R2,并且通过选择传输概率βL作为分叉参数,则对于R2的值,发生向后分叉的现象。因此,当R0=1时,其相关再现数为R0的完整模型也表现出后向分叉。模型的平衡点及其稳定性是基于各自繁殖数量的大小来确定和分析的。最后,通过数值模拟验证了理论结果的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling visceral leishmaniasis and tuberculosis co-infection dynamics
The co-infection of visceral leishmaniasis (VL) and tuberculosis (TB) patients pose a major public health challenge. In this study, we develop a mathematical model to study the transmission dynamics of VL and TB co-infection by first analyzing the VL and TB sub-models separately. The dynamics of these sub-models and the full co-infection model are determined based on the reproduction number. When the associated reproduction number (R1) for the TB-only model and (R2) for the VL-only are less than unity, the model exhibits backward bifurcation. If max{R1,R2}=R1, then the TB-VL co-infection model exhibits backward bifurcation for values of R1. Furthermore, if max{R1,R2}=R2, and by choosing the transmission probability, βL as the bifurcation parameter, then the phenomenon of backward bifurcation occurs for values of R2. Consequently, the full model, whose associated reproduction number is R0, also exhibits backward bifurcation when R0=1. The equilibrium points and their stability for the models are determined and analyzed based on the magnitude of the respective reproduction numbers. Finally, some numerical simulations are presented to show the reliability of our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Applied Mathematics and Statistics
Frontiers in Applied Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.90
自引率
7.10%
发文量
117
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信