Bayesian synthetic likelihood for stochastic models with applications in mathematical finance

IF 1.3 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
R. Maraia, Sebastian Springer, Teemu Härkönen, M. Simon, H. Haario
{"title":"Bayesian synthetic likelihood for stochastic models with applications in mathematical finance","authors":"R. Maraia, Sebastian Springer, Teemu Härkönen, M. Simon, H. Haario","doi":"10.3389/fams.2023.1187878","DOIUrl":null,"url":null,"abstract":"We present a Bayesian synthetic likelihood method to estimate both the parameters and their uncertainty in systems of stochastic differential equations. Together with novel summary statistics the method provides a generic and model-agnostic estimation procedure and is shown to perform well even for small observational data sets and biased observations of latent processes. Moreover, a strategy for assessing the goodness of the model fit to the observational data is provided. The combination of the aforementioned features differentiates our approach from other well-established estimation methods. We would like to stress the fact that the algorithm is pleasingly parallel and thus well suited for implementation on modern computing hardware. We test and compare the method to maximum likelihood, filtering and transition density estimation methods on a number of practically relevant examples from mathematical finance. Additionally, we analyze how to treat the lack-of-fit in situations where the model is biased due to the necessity of using proxies in place of unobserved volatility.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2023.1187878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a Bayesian synthetic likelihood method to estimate both the parameters and their uncertainty in systems of stochastic differential equations. Together with novel summary statistics the method provides a generic and model-agnostic estimation procedure and is shown to perform well even for small observational data sets and biased observations of latent processes. Moreover, a strategy for assessing the goodness of the model fit to the observational data is provided. The combination of the aforementioned features differentiates our approach from other well-established estimation methods. We would like to stress the fact that the algorithm is pleasingly parallel and thus well suited for implementation on modern computing hardware. We test and compare the method to maximum likelihood, filtering and transition density estimation methods on a number of practically relevant examples from mathematical finance. Additionally, we analyze how to treat the lack-of-fit in situations where the model is biased due to the necessity of using proxies in place of unobserved volatility.
随机模型的贝叶斯综合似然及其在数学金融中的应用
我们提出了一种贝叶斯综合似然方法来估计随机微分方程组的参数及其不确定性。该方法与新颖的汇总统计数据一起提供了一种通用的、模型不可知的估计程序,并且即使对于小的观测数据集和潜在过程的偏差观测也表现良好。此外,还提供了一种评估模型与观测数据拟合优度的策略。上述特征的组合使我们的方法与其他公认的估计方法不同。我们想强调的是,该算法是令人愉快的并行算法,因此非常适合在现代计算硬件上实现。我们在数学金融的一些实际相关例子中测试并比较了该方法与最大似然、滤波和转移密度估计方法。此外,我们还分析了在模型因使用代理代替未观察到的波动性而存在偏差的情况下,如何处理不匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Applied Mathematics and Statistics
Frontiers in Applied Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.90
自引率
7.10%
发文量
117
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信