Progress in Additive Manufacturing最新文献

筛选
英文 中文
High conductive copper alloys for additive manufacturing 增材制造用高导电性铜合金
Progress in Additive Manufacturing Pub Date : 2023-10-31 DOI: 10.1007/s40964-023-00527-3
T. Fiedler, M. Jähnig Domingues, C. Winter, J. Rösler
{"title":"High conductive copper alloys for additive manufacturing","authors":"T. Fiedler, M. Jähnig Domingues, C. Winter, J. Rösler","doi":"10.1007/s40964-023-00527-3","DOIUrl":"https://doi.org/10.1007/s40964-023-00527-3","url":null,"abstract":"Abstract For applications where high thermal and/or electrical conductivity combined with reasonably high strength is required, copper alloys may be used. Although many different alloys were already developed in the past, additive manufacturing like laser powder bed fusion (PBF-LB/M) opens up new possibilities for alloy development, mainly driven by the very high cooling rates. This allows for the usage of precipitation-hardened alloys with compositions exceeding the maximum solubility. The present work focuses on the investigation of a well-known CuCr1Zr alloy as well as CuZr alloys with 1 and 2 wt.% Zr. For a fast, resource-efficient screening and demonstration of feasibility, the investigated alloys were not printed from powder. Instead, solid sheets were partially re-melted in a PBF-LB/M machine to obtain a microstructure similar to the printed state. This rapid-solidification microstructure is investigated, and precipitates with a size 50 nm or even smaller are found. After subsequent aging heat treatments, the hardness of the alloys exceeds the maximum hardness achievable with conventional manufacturing methods (excluding work hardening). The investigations in this work revealed the great hardening potential of these alloys for usage in the PBF-LB/M process.","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"449 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135870679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy absorption of 3D printed multi-material elastic lattice structures 3D打印多材料弹性晶格结构的能量吸收
Progress in Additive Manufacturing Pub Date : 2023-10-30 DOI: 10.1007/s40964-023-00529-1
Conner Kreide, Ermias Koricho, Kamran Kardel
{"title":"Energy absorption of 3D printed multi-material elastic lattice structures","authors":"Conner Kreide, Ermias Koricho, Kamran Kardel","doi":"10.1007/s40964-023-00529-1","DOIUrl":"https://doi.org/10.1007/s40964-023-00529-1","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"161 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136067891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special issue “New Trends in 4D Printing: from Design to Materials and Applications” 特刊“4D打印新趋势:从设计到材料和应用”
Progress in Additive Manufacturing Pub Date : 2023-10-30 DOI: 10.1007/s40964-023-00512-w
Ali Zolfagharian, Eujin Pei, Giulia Scalet, Mahdi Bodaghi
{"title":"Special issue “New Trends in 4D Printing: from Design to Materials and Applications”","authors":"Ali Zolfagharian, Eujin Pei, Giulia Scalet, Mahdi Bodaghi","doi":"10.1007/s40964-023-00512-w","DOIUrl":"https://doi.org/10.1007/s40964-023-00512-w","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"24 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136023367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal casting into NaCl molds fabricated by material extrusion 3D printing 金属浇铸入材料挤压3D打印制造的NaCl模具中
Progress in Additive Manufacturing Pub Date : 2023-10-29 DOI: 10.1007/s40964-023-00528-2
René Wick-Joliat, Dirk Penner
{"title":"Metal casting into NaCl molds fabricated by material extrusion 3D printing","authors":"René Wick-Joliat, Dirk Penner","doi":"10.1007/s40964-023-00528-2","DOIUrl":"https://doi.org/10.1007/s40964-023-00528-2","url":null,"abstract":"Abstract Aluminum die casting is a well-established industrial process for mass producing aluminum parts with complex shapes, but design restrictions exclude some features like undercuts and hollow structures from being produced with this method. Water-soluble casting molds offer a promising solution to overcome those restrains, for example by hot pressing of salt cores or 3D printing of NaCl molds. Presently, 3D printing techniques available for NaCl are limited to direct ink writing (DIW) and photopolymerization. This study presents an approach to prepare NaCl parts by thermoplastic material extrusion (MEX) 3D printing. Firstly, a 3D printable feedstock is developed consisting of an organic binder, which is usually used for ceramic injection molding, and sodium chloride (NaCl) salt crystals. Various molds are then printed on a granulate-fed MEX printer. After thermal debinding and sintering at 690 °C, the 3D printed parts consist of pure NaCl. Furthermore, the same NaCl feedstock is used for injection molding. The bending strength of 3D printed samples with and without post-treatment are measured and compared to injection molded test specimens. Finally, metal casting in 3D printed NaCl molds is shown with tin or aluminum and the metal demonstrator parts with complex geometries such as gyroid structures and turbine wheels are released by dissolving the NaCl molds in water.","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"17 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136134592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A computational model for stereolithography apparatus (SLA) 3D printing 立体光刻设备(SLA) 3D打印的计算模型
Progress in Additive Manufacturing Pub Date : 2023-10-28 DOI: 10.1007/s40964-023-00525-5
Nandagopal Vidhu, Ayush Gupta, Roozbeh Salajeghe, Jon Spangenberg, Deepak Marla
{"title":"A computational model for stereolithography apparatus (SLA) 3D printing","authors":"Nandagopal Vidhu, Ayush Gupta, Roozbeh Salajeghe, Jon Spangenberg, Deepak Marla","doi":"10.1007/s40964-023-00525-5","DOIUrl":"https://doi.org/10.1007/s40964-023-00525-5","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"217 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136159369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adapting Fe–Mn–Si–Cr shape memory alloy for laser powder bed fusion by adjusting the Mn content 通过调整锰含量调整用于激光粉末床熔化的铁-锰-硅-脆形状记忆合金
Progress in Additive Manufacturing Pub Date : 2023-10-28 DOI: 10.1007/s40964-023-00526-4
Eric Gärtner, Inga Meyenborg, A. Toenjes
{"title":"Adapting Fe–Mn–Si–Cr shape memory alloy for laser powder bed fusion by adjusting the Mn content","authors":"Eric Gärtner, Inga Meyenborg, A. Toenjes","doi":"10.1007/s40964-023-00526-4","DOIUrl":"https://doi.org/10.1007/s40964-023-00526-4","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"277 1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139312104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron beam melting additive manufacturing process efficiency study of stainless steel 不锈钢电子束熔化增材制造工艺效率研究
Progress in Additive Manufacturing Pub Date : 2023-10-27 DOI: 10.1007/s40964-023-00522-8
Elroei Damri, Itzhak Orion, Yaron I. Ganor, Dor Braun, Eitan Tiferet
{"title":"Electron beam melting additive manufacturing process efficiency study of stainless steel","authors":"Elroei Damri, Itzhak Orion, Yaron I. Ganor, Dor Braun, Eitan Tiferet","doi":"10.1007/s40964-023-00522-8","DOIUrl":"https://doi.org/10.1007/s40964-023-00522-8","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136261629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solidification of the Ni-based superalloy CMSX-4 simulated with full complexity in 3-dimensions 三维模拟了ni基高温合金CMSX-4的凝固过程
Progress in Additive Manufacturing Pub Date : 2023-10-24 DOI: 10.1007/s40964-023-00513-9
Murali Uddagiri, Oleg Shchyglo, Ingo Steinbach, Marvin Tegeler
{"title":"Solidification of the Ni-based superalloy CMSX-4 simulated with full complexity in 3-dimensions","authors":"Murali Uddagiri, Oleg Shchyglo, Ingo Steinbach, Marvin Tegeler","doi":"10.1007/s40964-023-00513-9","DOIUrl":"https://doi.org/10.1007/s40964-023-00513-9","url":null,"abstract":"Abstract In this work, we present phase-field (PF) simulations directly coupled to thermodynamic and kinetic databases in three dimensions. The direct coupling allows consideration of the full alloy complexity of the CMSX-4 superalloy over a large range of temperatures. The simulation conditions are chosen for additive manufacturing utilizing Electron Beam Melting (EBM). Transformation of interdendritic liquid into eutectic $$gamma '$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>γ</mml:mi> <mml:mo>′</mml:mo> </mml:msup> </mml:math> is considered. The simulation results confirm the unique segregation behavior of all the alloying elements. It is demonstrated that the treatment of the full complexity of alloy composition is superior to all approximations with quasi-binary or -ternary approximation and justifies the significantly increased computational effort. Our results demonstrate that multi-component simulations must become a standard for phase-field applications to real material systems.","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"14 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135316276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simple potential energy formulation for 3D concrete printed structures considering the shear effects in the build direction 考虑建筑方向剪切效应的三维混凝土打印结构的简单势能公式
Progress in Additive Manufacturing Pub Date : 2023-10-20 DOI: 10.1007/s40964-023-00509-5
Lalit Kumar, Biranchi Panda, N. Muthu
{"title":"A simple potential energy formulation for 3D concrete printed structures considering the shear effects in the build direction","authors":"Lalit Kumar, Biranchi Panda, N. Muthu","doi":"10.1007/s40964-023-00509-5","DOIUrl":"https://doi.org/10.1007/s40964-023-00509-5","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135617862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and numerical investigations of the hot cracking susceptibility during the powder bed fusion of AA 7075 using a laser beam 激光对AA 7075粉末床熔合热裂敏感性的实验与数值研究
Progress in Additive Manufacturing Pub Date : 2023-10-17 DOI: 10.1007/s40964-023-00523-7
Andreas Wimmer, Hannes Panzer, Christopher Zoeller, Stefan Adami, Nikolaus A. Adams, Michael F. Zaeh
{"title":"Experimental and numerical investigations of the hot cracking susceptibility during the powder bed fusion of AA 7075 using a laser beam","authors":"Andreas Wimmer, Hannes Panzer, Christopher Zoeller, Stefan Adami, Nikolaus A. Adams, Michael F. Zaeh","doi":"10.1007/s40964-023-00523-7","DOIUrl":"https://doi.org/10.1007/s40964-023-00523-7","url":null,"abstract":"Abstract The variety of processable materials for the powder bed fusion of metals using a laser beam (PBF-LB/M) is still limited. In particular, high-strength aluminum alloys are difficult to process with PBF-LB/M without the occurrence of hot cracks. In situ alloying is a promising method to modify the physical properties of an alloy to reduce its hot cracking susceptibility. In this work, the aluminum alloy 7075 and blends with 2 wt.%, 4 wt.%, and 6 wt.% of Si were processed via PBF-LB/M. The Rappaz–Drezet–Gremaud (RDG) model and the Kou model were investigated regarding their capability of predicting the hot cracking behavior for the aluminum alloy 7075 and the three powder blends. The smoothed-particle hydrodynamics (SPH) method was used to gain the thermal input data for the RDG model. A clear tendency of a reduced hot cracking susceptibility with an increasing amount of Si was observed in the experiments and in the simulations. A detailed analysis of the type of the hot cracking mechanism in the aluminum alloy 7075 provided several indications of the presence of liquation cracking. The Kou model and the RDG model may be applicable for both solidification and liquation cracking. The presented methodology can be used to investigate any material combination and its susceptibility to hot cracking.","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136033468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信