Faizan Badar, Luigi-Jules Vandi, Danilo Carluccio, Michael Redmond, James I. Novak
{"title":"Preliminary colour characterisation of a Stratasys J750 digital anatomy printer with different fillings and face orientations","authors":"Faizan Badar, Luigi-Jules Vandi, Danilo Carluccio, Michael Redmond, James I. Novak","doi":"10.1007/s40964-023-00519-3","DOIUrl":"https://doi.org/10.1007/s40964-023-00519-3","url":null,"abstract":"Abstract Multicolour capability in additive manufacturing could play a key role in certain applications such as surgical training and consumer products. However, the ability to accurately 3D print colours is not well documented and could affect the realism of models produced through these technologies. As a recent system, the Stratasys J750 Digital Anatomy Printer has yet to be analyzed for its colour perception and accuracy, which is quantified through this study. This will allow users of this and similar material jetting systems with an improved understanding of the relationship between digitally applied colours and their result when 3D printed, as well as the influence of certain settings. Thirty-three rectangular prism models with different CMYK and RGB colours, as well as infill materials, were printed on a Stratasys J750 DAP printer. These were scanned on five faces using a Nix Mini 2 handheld colour sensor, documenting readings in CIELAB format. The data were analyzed using the CIEDE2000 colour difference formula, and its recent modifications for 3D printed objects. Results found statistically significant and perceptive differences in colour accuracy among different colours, core materials, and face orientations. It was also observed that the addition of VeroPureWhite as filler material instead of the default SUP706 support improved colour accuracy. The study recommends the following steps to improve colour accuracy: (i) avoid the addition of black (K) manually in CMYK colour space, (ii) use pure white as the base infill material instead of support material, (iii) add a little white (~ 10%–30%) to make samples opaque instead of translucent.","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135994081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenzheng Wu, Aodu Zheng, Qingping Liu, Jerry Ying Hsi Fuh, Luquan Ren, Guiwei Li
{"title":"3D morphological analysis of Fe-based metallic glass surfaces via laser powder bed fusion using a digital microscope","authors":"Wenzheng Wu, Aodu Zheng, Qingping Liu, Jerry Ying Hsi Fuh, Luquan Ren, Guiwei Li","doi":"10.1007/s40964-023-00511-x","DOIUrl":"https://doi.org/10.1007/s40964-023-00511-x","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"184 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136112243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mustafijur Rahman, Kazi Sirajul Islam, Tanvir Mahady Dip, Mohammed Farhad Mahmud Chowdhury, Smita Rani Debnath, Shah Md. Maruf Hasan, Md. Sadman Sakib, Tanushree Saha, Rajiv Padhye, Shadi Houshyar
{"title":"A review on nanomaterial-based additive manufacturing: dynamics in properties, prospects, and challenges","authors":"Mustafijur Rahman, Kazi Sirajul Islam, Tanvir Mahady Dip, Mohammed Farhad Mahmud Chowdhury, Smita Rani Debnath, Shah Md. Maruf Hasan, Md. Sadman Sakib, Tanushree Saha, Rajiv Padhye, Shadi Houshyar","doi":"10.1007/s40964-023-00514-8","DOIUrl":"https://doi.org/10.1007/s40964-023-00514-8","url":null,"abstract":"Abstract The incorporation of nanomaterials has revolutionized the field of additive manufacturing. The combination of additive manufacturing technology with nanomaterials has significantly broadened the scope of materials available for modern and innovative applications in various fields, including healthcare, construction, food processing, and the textile industry. By integrating nanomaterials into additive manufacturing, the manufacturing process can be enhanced, and the properties of materials can be improved, enabling the fabrication of intricate structures and complex shapes. This review provides a comprehensive overview of the latest research on additive manufacturing techniques that utilize nanomaterials. It covers a wide range of nanomaterials employed in additive manufacturing and presents recent research findings on their incorporation into various categories of additive manufacturing, highlighting their impact on the properties of the final product. Moreover, the article discusses the potential of nanomaterial-based additive manufacturing technologies to revolutionize the manufacturing industry and explores the diverse applications of these techniques. The review concludes by outlining future research directions and focusing on addressing current challenges to enhance the overall efficiency and effectiveness of nanomaterial-based additive manufacturing. Graphical abstract","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135766140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bharath Bhushan Ravichander, Shweta Hanmant Jagdale, Golden Kumar
{"title":"Decoupling the effect of orientation on additively manufactured metals by lattice engineering","authors":"Bharath Bhushan Ravichander, Shweta Hanmant Jagdale, Golden Kumar","doi":"10.1007/s40964-023-00520-w","DOIUrl":"https://doi.org/10.1007/s40964-023-00520-w","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135854751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Philipp Kindermann, Maximilian Strasser, Martin Wunderer, Ismail Uensal, Max Horn, Christian Seidel
{"title":"Cold spray forming: a novel approach in cold spray additive manufacturing of complex parts using 3D-printed polymer molds","authors":"Philipp Kindermann, Maximilian Strasser, Martin Wunderer, Ismail Uensal, Max Horn, Christian Seidel","doi":"10.1007/s40964-023-00521-9","DOIUrl":"https://doi.org/10.1007/s40964-023-00521-9","url":null,"abstract":"Abstract The solid-state additive manufacturing (AM) process cold spraying (CS) offers advantageous properties such as melt-free near-net-shape part fabrication and high deposition rates. Compared to other metal-based AM processes such as the powder bed fusion of metals (PBF-LB/M) or directed energy deposition (DED) processes such as laser metal deposition (DED-LB), CS features lower part resolution. One solution to increase the achievable level of detail is spraying onto removable molds. No study exists that investigates the general feasibility and manufacturing boundaries, from which design guidelines could be derived. In this paper, the applicability of material extruded and thermally bonded polymer (MEX-TRB/P) shapes, which is especially suitable for flexible low-cost production of small batches, as molds for cold spray additive manufacturing (CSAM) is investigated. For this purpose, material extruded thermoplastics are examined regarding their suitability for the CS process. Furthermore, geometrical and thus constructive restrictions of this new approach “Cold Spray Forming” (CSF) are analyzed using an industry-relevant use case. It was shown that the feasibility of this approach could be determined by the material value hardness of the sprayed polymer substrates.","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antimicrobial property, corrosion resistance and tarnish resistance of cold-sprayed additive manufactured copper-nickel alloy","authors":"Thi Thuy Tien Tran, Kannoorpatti Krishnan","doi":"10.1007/s40964-023-00517-5","DOIUrl":"https://doi.org/10.1007/s40964-023-00517-5","url":null,"abstract":"Abstract The management of infectious diseases has posed a significant challenge in recent years, drawing the attention of scientific communities. Copper is renowned for its robust antimicrobial properties; however, it is susceptible to tarnishing. In contrast, copper-nickel alloy demonstrates not only commendable mechanical strength and corrosion resistance but also exceptional antimicrobial efficacy. A suitable copper-nickel alloy was synthesised using cold spray additive manufacturing, blending copper and nickel powders. The resultant as-printed coupons underwent heat treatment at varying temperatures to ensure alloy formation, porosity reduction, and property enhancement. Both corrosion properties and hardness were investigated across different selected heat treatment conditions. The specimens exhibiting the highest corrosion resistance and hardness were selected for antibacterial and tarnish resistance testing. Stainless Steel 316 was employed in the antibacterial evaluation as a negative control for comparison. Notably, a fair well distribution of copper and nickel was observed within the as-printed product. The optimal heat treatment condition for the copper-nickel alloy was determined to be 1030 °C followed by air cooling, as it exhibited superior material properties compared to alternative heat treatment conditions. An assessment of antimicrobial performance underscored the alloy’s effectiveness in rapidly eradicating bacteria. Additionally, the highest strength samples underwent a tarnish resistance study, revealing elevated tarnish resistance. The nature of material performance in response to the heat-treatment process and antibacterial performance are discussed.","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135855550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. R. Amithesh, Balasurya Shanmugasundaram, Shravya Kamath, S. S. Adhithyan, Ramu Murugan
{"title":"Analysis of dimensional quality in FDM printed Nylon 6 parts","authors":"S. R. Amithesh, Balasurya Shanmugasundaram, Shravya Kamath, S. S. Adhithyan, Ramu Murugan","doi":"10.1007/s40964-023-00515-7","DOIUrl":"https://doi.org/10.1007/s40964-023-00515-7","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136012800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influences of 3D printing parameters on the mechanical properties of wood PLA filament: an experimental analysis by Taguchi method","authors":"Jakiya Sultana, Md Mazedur Rahman, Yanen Wang, Ammar Ahmed, Chen Xiaohu","doi":"10.1007/s40964-023-00516-6","DOIUrl":"https://doi.org/10.1007/s40964-023-00516-6","url":null,"abstract":"Abstract This study investigates the effects of 3D printing parameters on the mechanical properties (predominantly tensile properties) of a commercial polylactic acid-based wood fiber composite material known as wood filament. The influence of printing parameters, including layer thickness, infill density, printing speed, and nozzle temperature on the mechanical properties, is studied, and the design of the experiment (DOE) is made through Taguchi L 9 orthogonal array. The specimens for the tensile test are fabricated by the material extrusion (MEX) 3D printer, which is also known as fused deposition modeling (FDM) or fused filament fabrication (FFF). After conducting the tensile test, this research considers four significant outcomes: tensile strength, maximum load, elastic modulus, and elongation at break. Further analysis of the obtained results from mechanical testing is performed through analysis of variance (ANOVA) to determine the significance of each parameter on the mechanical properties. Moreover, prediction and optimization are conducted to verify the obtained results from the DOE. Furthermore, scanning electronic microscopy (SEM) is used to analyze the fracture zones, cracks, voids, and fiber/matrix adhesion of the FDM fabricated parts which demonstrates that the lower layer thickness provides better adhesion and fewer voids between successive layers and thus exhibits better mechanical performance. Graphical abstract","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135969001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Barber, P. Revolinsky, E. Spinelli, V. C. Jamora, H. Eisazadeh, O. G. Kravchenko
{"title":"Investigation of high temperature compaction on fracture toughness of 3D printed carbon fiber polyamide composites","authors":"J. Barber, P. Revolinsky, E. Spinelli, V. C. Jamora, H. Eisazadeh, O. G. Kravchenko","doi":"10.1007/s40964-023-00507-7","DOIUrl":"https://doi.org/10.1007/s40964-023-00507-7","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}