Proceedings of the International Geometry Center最新文献

筛选
英文 中文
Some remarks on a theorem of Green 关于格林的一个定理的几点说明
Proceedings of the International Geometry Center Pub Date : 2022-12-06 DOI: 10.15673/tmgc.v15i3-4.2328
Abdessami Jalled, F. Haggui
{"title":"Some remarks on a theorem of Green","authors":"Abdessami Jalled, F. Haggui","doi":"10.15673/tmgc.v15i3-4.2328","DOIUrl":"https://doi.org/10.15673/tmgc.v15i3-4.2328","url":null,"abstract":"The purpose of this paper is to study holomorphic curves f from C to C3 avoiding four complex hyperplanes and a real subspace of real dimension four in C3. We show that the projection of f into the complex projective space C P^2 does not remain constant as in the complex case studied by Green, which indicates that the complex structure of the avoided hyperplanes is a necessary condition in the Green theorem","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73449970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Canonical quasi-geodesic mappings of special pseudo-Riemannian spaces 特殊伪黎曼空间的正则拟测地线映射
Proceedings of the International Geometry Center Pub Date : 2022-12-06 DOI: 10.15673/tmgc.v15i3-4.2329
I. Kurbatova, M. Pistruil
{"title":"Canonical quasi-geodesic mappings of special pseudo-Riemannian spaces","authors":"I. Kurbatova, M. Pistruil","doi":"10.15673/tmgc.v15i3-4.2329","DOIUrl":"https://doi.org/10.15673/tmgc.v15i3-4.2329","url":null,"abstract":"The present paper continues the study of quasi-geodesic mappings f:(Vn, gij, Fih) → (V'n,g'ij, Fih) of pseudo-Riemannian spaces Vn, V'n with a generalized-recurrent structure Fih of parabolic type. By a generalized recurrent structure of parabolic type on Vn we mean an almost Hermitian affinor structure of parabolic type for which the covariant derivative of the structural affinor Fih satisfies the condition F(i,j)h=q(i Fj)h. \u0000In the previous paper by the authors [Proc. Intern. Geom. Center, 13:3 (2020) 18-32] it was proved that the class of pseudo-Riemannian spaces with generalized-recurrent structure of parabolic type is closed with respect to the considered mappings and the generalized recurrence vectors in (Vn, gij,Fih) and (V'_n, g'ij, Fih) may be distinct. In this article, it is assumed that the mapping f preserves the generalized recurrence vector qi. \u0000We construct geometric objects that are invariant under the quasi-geodesic mapping of generalized-recurrent spaces of parabolic type and recurrent-parabolic spaces. A number of conditions are given on these objects, which lead to the fact that a generalized-recurrent space of parabolic type admits a parabolic K-structure, and a recurrent-parabolic space admits a Kählerian structure of parabolic type. \u0000We study special types of these mappings that preserve some tensors of an intrinsic nature.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83223237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Оскуляторний інтерполяційний ланцюговий дріб Тіле
Proceedings of the International Geometry Center Pub Date : 2022-10-15 DOI: 10.15673/tmgc.v15i2.2296
M. Pahirya, Yuliya Mislo
{"title":"Оскуляторний інтерполяційний ланцюговий дріб Тіле","authors":"M. Pahirya, Yuliya Mislo","doi":"10.15673/tmgc.v15i2.2296","DOIUrl":"https://doi.org/10.15673/tmgc.v15i2.2296","url":null,"abstract":"Інтерполяційний ланцюговий дріб Тіле з кратними вузлами є аналогом інтерполяційного многочлена Ерміта в теорії ланцюгових дробів. В роботі досліджується задача побудови оскуляторного (дотичного) до функції f в точці z0 інтерполяційного ланцюгового дробу Тіле (ОІЛДТ). Для обчислення коефіцієнтів OICFT використовуються лише значення функції f та її похідних у точці z0. Запропонований метод знаходження коефіцієнтів ґрунтується на обчислені значень m-кратних сум і не передбачає обчислення значень ганкелевих визначників.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84622572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On quasi-geodesic mappings of special pseudo-Riemannian spaces 关于特殊伪黎曼空间的拟测地线映射
Proceedings of the International Geometry Center Pub Date : 2022-10-03 DOI: 10.15673/tmgc.v15i2.2226
I. Kurbatova, M. Pistruil
{"title":"On quasi-geodesic mappings of special pseudo-Riemannian spaces","authors":"I. Kurbatova, M. Pistruil","doi":"10.15673/tmgc.v15i2.2226","DOIUrl":"https://doi.org/10.15673/tmgc.v15i2.2226","url":null,"abstract":"The present paper continues the study of quasi-geodesic mappings f:(Vn, gij, Fih) → (V'n,g'ij, Fih) of pseudo-Riemannian spaces Vn, V'n with a generalized-recurrent structure Fih of parabolic type. By a generalized recurrent structure of parabolic type on Vn we mean an almost Hermitian affinor structure of parabolic type for which the covariant derivative of the structural affinor Fih satisfies the condition F(i,j)h=q(i Fj)h. \u0000In the previous paper by the authors [Proc. Intern. Geom. Center, 13:3 (2020) 18-32] it was proved that the class of pseudo-Riemannian spaces with generalized-recurrent structure of parabolic type is closed with respect to the considered mappings and the generalized recurrence vectors in (Vn, gij,Fih) and (V'_n, g'ij, Fih) may be distinct. In this article, it is assumed that the mapping f preserves the generalized recurrence vector qi. \u0000We construct geometric objects that are invariant under the quasi-geodesic mapping of generalized-recurrent spaces of parabolic type and recurrent-parabolic spaces. A number of conditions are given on these objects, which lead to the fact that a generalized-recurrent space of parabolic type admits a parabolic K-structure, and a recurrent-parabolic space admits a Kählerian structure of parabolic type. \u0000We study special types of these mappings that preserve some tensors of an intrinsic nature.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"157 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86339705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Geodesic Ricci-symmetric pseudo-Riemannian spaces 测地线里奇对称伪黎曼空间
Proceedings of the International Geometry Center Pub Date : 2022-09-30 DOI: 10.15673/tmgc.v15i2.2224
V. Kiosak, L. Kusik, V. Isaiev
{"title":"Geodesic Ricci-symmetric pseudo-Riemannian spaces","authors":"V. Kiosak, L. Kusik, V. Isaiev","doi":"10.15673/tmgc.v15i2.2224","DOIUrl":"https://doi.org/10.15673/tmgc.v15i2.2224","url":null,"abstract":"We introduced special pseudo-Riemannian spaces, called geodesic A-symmetric spaces, into consideration. It is proven that there are no geodesic symmetric spaces and no geodesic Ricci symmetric spaces, which differ from spaces of constant curvature and Einstein spaces respectively. The research is carried out locally, by tensor methods, without any limitations imposed on a metric and a sign.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90881694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The flow-curvature of spacelike parametrized curves in the Lorentz plane 洛伦兹平面上类空间参数化曲线的流动曲率
Proceedings of the International Geometry Center Pub Date : 2022-09-18 DOI: 10.15673/tmgc.v15i2.2281
M. Crasmareanu
{"title":"The flow-curvature of spacelike parametrized curves in the Lorentz plane","authors":"M. Crasmareanu","doi":"10.15673/tmgc.v15i2.2281","DOIUrl":"https://doi.org/10.15673/tmgc.v15i2.2281","url":null,"abstract":"We introduce and study a new frame and a new curvature function for a fixed parametrization of a spacelike curve in the Lorentz plane. This new frame is called flow-frame since it involves the time-dependent rotation of the usual Frenet flow.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"2002 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88318825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
When is the space of semi-additive functionals an absolute (neighbourhood) retract? 半加性泛函的空间何时是绝对(邻域)缩回?
Proceedings of the International Geometry Center Pub Date : 2022-09-10 DOI: 10.15673/tmgc.v15i2.2020
A. Zaitov, K. Kurbanov
{"title":"When is the space of semi-additive functionals an absolute (neighbourhood) retract?","authors":"A. Zaitov, K. Kurbanov","doi":"10.15673/tmgc.v15i2.2020","DOIUrl":"https://doi.org/10.15673/tmgc.v15i2.2020","url":null,"abstract":"In the present paper proved that if for a given compact Hausdorff space X the hyperspace exp(X) is a contractible compact space then the space OSf(X) is also a contractible compact space. As a consequence it is established that the space OSf(X) of semi-additive functionals is absolute (neighbourhood) retract if and only if the hyperspace exp(X) is so.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73643675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological structure of optimal flows on the Girl's surface 女孩表面最优流的拓扑结构
Proceedings of the International Geometry Center Pub Date : 2022-08-20 DOI: 10.15673/tmgc.v15i3-4.2338
A. Prishlyak, M. Loseva
{"title":"Topological structure of optimal flows on the Girl's surface","authors":"A. Prishlyak, M. Loseva","doi":"10.15673/tmgc.v15i3-4.2338","DOIUrl":"https://doi.org/10.15673/tmgc.v15i3-4.2338","url":null,"abstract":"We investigate the topological structure of flows on the Girl's surface which is one of two possible immersions of the projective plane in three-dimensional space with one triple point of self-intersection. First, we describe the cellular structure of the Boy's and Girl's surfaces and prove that there are unique images of the project plane in the form of a $2$-disk, in which the opposite points of the boundary are identified and this boundary belongs to the preimage of the $1$-skeleton of the surface. Second, we describe three structures of flows with one fixed point and no separatrices on the Girl's surface and prove that there are no other such flows. Third, we prove that Morse-Smale flows and they alone are structurally stable on the Boy's and Girl's surfaces. Fourth, we find all possible structures of optimal Morse-Smale flows on the Girl's surface. Fifth, we obtain a classification of Morse-Smale flows on the projective plane immersed on the Girl's surface. And finally, we describe the isotopic classes of these flows.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90510262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Quasiconformal mappings and curvatures on metric measure spaces 度量度量空间上的拟共形映射和曲率
Proceedings of the International Geometry Center Pub Date : 2022-07-29 DOI: 10.15673/tmgc.v15i3-4.2369
Jialong Deng
{"title":"Quasiconformal mappings and curvatures on metric measure spaces","authors":"Jialong Deng","doi":"10.15673/tmgc.v15i3-4.2369","DOIUrl":"https://doi.org/10.15673/tmgc.v15i3-4.2369","url":null,"abstract":"In an attempt to develop higher-dimensional quasiconformal mappings on metric measure spaces with curvature conditions, i.e. from Ahlfors to Alexandrov, we show that for n≥2 a noncollapsed RCD(0,n) space with Euclidean volume growth is an n-Loewner space and satisfies the infinitesimal-to-global principle.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75605830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On diffeological principal bundles of non-formal pseudo-differential operators over formal ones 非形式伪微分算子在形式算子上的微分主束
Proceedings of the International Geometry Center Pub Date : 2022-06-28 DOI: 10.15673/pigc.v16i2.2298
Jean-Pierre Magnot
{"title":"On diffeological principal bundles of non-formal pseudo-differential operators over formal ones","authors":"Jean-Pierre Magnot","doi":"10.15673/pigc.v16i2.2298","DOIUrl":"https://doi.org/10.15673/pigc.v16i2.2298","url":null,"abstract":"We describe the structure of diffeological bundle of non formal classical pseudo-differential operators over formal ones, and its structure group. For this, we give results on diffeological principal bundles with (a priori) no local trivialization including an Ambrose-Singer theorem, use the smoothing connections alrealy exhibited by the author in previous works, and finish with open questions.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84738522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信