Proceedings of the International Geometry Center最新文献

筛选
英文 中文
An extension of Mobius--Lie geometry with conformal ensembles of cycles and its implementation in a GiNaC library Mobius- Lie几何的保形环系扩展及其在GiNaC库中的实现
Proceedings of the International Geometry Center Pub Date : 2015-12-09 DOI: 10.15673/tmgc.v11i3.1203
V. Kisil
{"title":"An extension of Mobius--Lie geometry with conformal ensembles of cycles and its implementation in a GiNaC library","authors":"V. Kisil","doi":"10.15673/tmgc.v11i3.1203","DOIUrl":"https://doi.org/10.15673/tmgc.v11i3.1203","url":null,"abstract":"We propose to consider ensembles of cycles (quadrics), which are interconnected through conformal-invariant geometric relations (e.g. ``to be orthogonal'', ``to be tangent'', etc.), as new objects in an extended M\"obius--Lie geometry. It was recently demonstrated in several related papers, that such ensembles of cycles naturally parameterize many other conformally-invariant families of objects, e.g. loxodromes or continued fractions. \u0000The paper describes a method, which reduces a collection of conformally in-vari-ant geometric relations to a system of linear equations, which may be accompanied by one fixed quadratic relation. To show its usefulness, the method is implemented as a {CPP} library. \u0000It operates with numeric and symbolic data of cycles in spaces of arbitrary dimensionality and metrics with any signatures. \u0000Numeric calculations can be done in exact or approximate arithmetic. In the two- and three-dimensional cases illustrations and animations can be produced. \u0000An interactive {Python} wrapper of the library is provided as well.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80760043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A Generalized Palais-Smale Condition in the Fr'{e}chet space setting Fr {e}空间下的广义Palais-Smale条件
Proceedings of the International Geometry Center Pub Date : 2014-10-21 DOI: 10.15673/tmgc.v11i1.915
K. Eftekharinasab
{"title":"A Generalized Palais-Smale Condition in the Fr'{e}chet space setting","authors":"K. Eftekharinasab","doi":"10.15673/tmgc.v11i1.915","DOIUrl":"https://doi.org/10.15673/tmgc.v11i1.915","url":null,"abstract":"The Palais-Smale condition was introduced by Palais and Smale in the mid-sixties and applied to an extension of Morse theory to infinite dimensional Hilbert spaces. Later this condition was extended by Palais for the more general case of real functions over Banach-Finsler manifolds in order to obtain Lusternik-Schnirelman theory in this setting.   Despite the importance of Fr'{e}chet spaces, critical point theories have not been developed yet in these spaces.Our aim in this paper is to extend the Palais-Smale condition to the cases of $C^1$-functionals on Fr'{e}chet spaces and Fr'{e}chet-Finsler manifolds of class  $C^1$.    The difficulty in the Fr'{e}chet  setting is the  lack of a general solvability theory for differential equations. This restricts us to adapt the deformation results (which are essential tools to locate critical points) as they appear as solutions of Cauchy problems. However,  Ekeland proved the result, today is known as Ekleand’s variational principle, concerning the existence of almost-minimums for a wide class of real functions on complete metric spaces. This principle can be used to obtain minimizing Palais-Smale sequences.  We use this principle along with the introduced conditions to obtain some customary results concerning the existence of minima in the Fr'{e}chet setting.Recently it has been developed the projective limit techniques to overcome problems (such as  solvability theory for differential equations) with Fr'{e}chet spaces. The idea of this approach is to represent a Fr'{e}chet space as the projective limit of Banach spaces. This approach provides solutions for a wide class of differential equations and every Fr'{e}chet space and therefore can be used to obtain deformation results.  This method would  be the proper framework for further development of critical point theory in the Fr'{e}chet setting.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85460099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信