{"title":"洛伦兹平面上类空间参数化曲线的流动曲率","authors":"M. Crasmareanu","doi":"10.15673/tmgc.v15i2.2281","DOIUrl":null,"url":null,"abstract":"We introduce and study a new frame and a new curvature function for a fixed parametrization of a spacelike curve in the Lorentz plane. This new frame is called flow-frame since it involves the time-dependent rotation of the usual Frenet flow.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"2002 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The flow-curvature of spacelike parametrized curves in the Lorentz plane\",\"authors\":\"M. Crasmareanu\",\"doi\":\"10.15673/tmgc.v15i2.2281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and study a new frame and a new curvature function for a fixed parametrization of a spacelike curve in the Lorentz plane. This new frame is called flow-frame since it involves the time-dependent rotation of the usual Frenet flow.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"2002 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/tmgc.v15i2.2281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v15i2.2281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
The flow-curvature of spacelike parametrized curves in the Lorentz plane
We introduce and study a new frame and a new curvature function for a fixed parametrization of a spacelike curve in the Lorentz plane. This new frame is called flow-frame since it involves the time-dependent rotation of the usual Frenet flow.