度量度量空间上的拟共形映射和曲率

Q3 Mathematics
Jialong Deng
{"title":"度量度量空间上的拟共形映射和曲率","authors":"Jialong Deng","doi":"10.15673/tmgc.v15i3-4.2369","DOIUrl":null,"url":null,"abstract":"In an attempt to develop higher-dimensional quasiconformal mappings on metric measure spaces with curvature conditions, i.e. from Ahlfors to Alexandrov, we show that for n≥2 a noncollapsed RCD(0,n) space with Euclidean volume growth is an n-Loewner space and satisfies the infinitesimal-to-global principle.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasiconformal mappings and curvatures on metric measure spaces\",\"authors\":\"Jialong Deng\",\"doi\":\"10.15673/tmgc.v15i3-4.2369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an attempt to develop higher-dimensional quasiconformal mappings on metric measure spaces with curvature conditions, i.e. from Ahlfors to Alexandrov, we show that for n≥2 a noncollapsed RCD(0,n) space with Euclidean volume growth is an n-Loewner space and satisfies the infinitesimal-to-global principle.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/tmgc.v15i3-4.2369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v15i3-4.2369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在具有曲率条件的度量度量空间上,即从Ahlfors到Alexandrov的高维拟共形映射的尝试中,我们证明了当n≥2时,具有欧几里德体积增长的非坍缩RCD(0,n)空间是一个n- loewner空间,并且满足无穷小到全局原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasiconformal mappings and curvatures on metric measure spaces
In an attempt to develop higher-dimensional quasiconformal mappings on metric measure spaces with curvature conditions, i.e. from Ahlfors to Alexandrov, we show that for n≥2 a noncollapsed RCD(0,n) space with Euclidean volume growth is an n-Loewner space and satisfies the infinitesimal-to-global principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信