AIMS Electronics and Electrical Engineering最新文献

筛选
英文 中文
Millimetre wave 3-D channel modelling for next generation 5G networks 下一代5G网络的毫米波三维信道建模
AIMS Electronics and Electrical Engineering Pub Date : 2022-01-01 DOI: 10.3934/electreng.2022003
Latih Saba'neh, Obada Al-Khatib
{"title":"Millimetre wave 3-D channel modelling for next generation 5G networks","authors":"Latih Saba'neh, Obada Al-Khatib","doi":"10.3934/electreng.2022003","DOIUrl":"https://doi.org/10.3934/electreng.2022003","url":null,"abstract":"Millimetre wave (mm-wave) spectrum (30-300GHz) is a key enabling technology in the advent of 5G. However, an accurate model for the mm-wave channel is yet to be developed as the existing 4G-LTE channel models (frequency below 6 GHz) exhibit different propagation attributes. In this paper, a spatial statistical channel model (SSCM) is considered that estimates the characteristics of the channel in the 28, 60, and 73 GHz bands. The SSCM is used to mathematically approximate the propagation path loss in different environments, namely, Urban-Macro, Urban-Micro, and Rural-Macro, under Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) conditions. The New York University (NYU) channel simulator is utilised to evaluate the channel model under various conditions including atmospheric effects, distance, and frequency. Moreover, a MIMO system has been evaluated under mm-wave propagation. The main results show that the 60 GHz band has the highest attenuation compared to the 28 and 73 GHz bands. The results also show that increasing the number of antennas is proportional to the condition number and the rank of the MIMO channel matrix.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analytical models of threshold voltage and drain induced barrier lowering in junctionless cylindrical surrounding gate (JLCSG) MOSFET using stacked high-k oxide 高k氧化物堆积式无结圆柱环绕栅MOSFET阈值电压和漏极势垒降低的分析模型
AIMS Electronics and Electrical Engineering Pub Date : 2022-01-01 DOI: 10.3934/electreng.2022007
H. Jung
{"title":"Analytical models of threshold voltage and drain induced barrier lowering in junctionless cylindrical surrounding gate (JLCSG) MOSFET using stacked high-k oxide","authors":"H. Jung","doi":"10.3934/electreng.2022007","DOIUrl":"https://doi.org/10.3934/electreng.2022007","url":null,"abstract":"<abstract> <p>We proposed the analytical models to analyze shifts in threshold voltage and drain induced barrier lowering (DIBL) when the stacked SiO<sub>2</sub>/high-<italic>k</italic> dielectric was used as the oxide film of Junctionless Cylindrical Surrounding Gate (JLCSG) MOSFET. As a result of comparing the results of the presented model with those of TCAD, it was a good fit, thus proving the validity of the presented model. It could be found that the threshold voltage increased, but DIBL decreased by these models as the high-<italic>k</italic> dielectric constant increased. However, the shifts of threshold voltage and DIBL significantly decreased as the high-<italic>k</italic> dielectric constant increased. As for the degree of reduction, the channel length had a greater effect than the thickness of the high-<italic>k</italic> dielectric, and the shifts of threshold voltage and DIBL were kept almost constant when the high-<italic>k</italic> dielectric constant was 20 or higher. Therefore, the use of dielectrics such as HfO<sub>2</sub>/ZrO<sub>2</sub>, La<sub>2</sub>O<sub>3</sub>, and TiO<sub>2</sub> with a dielectric constant of 20 or more for stacked oxide will be advantageous in reducing the short channel effect. In conclusion, these models were able to sufficiently analyze the threshold voltage and DIBL.</p> </abstract>","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of drain induced barrier lowering for junctionless double gate MOSFET using ferroelectric negative capacitance effect 利用铁电负电容效应降低无结双栅极MOSFET漏极感应势垒的分析
AIMS Electronics and Electrical Engineering Pub Date : 2022-01-01 DOI: 10.3934/electreng.2023003
H. Jung
{"title":"Analysis of drain induced barrier lowering for junctionless double gate MOSFET using ferroelectric negative capacitance effect","authors":"H. Jung","doi":"10.3934/electreng.2023003","DOIUrl":"https://doi.org/10.3934/electreng.2023003","url":null,"abstract":"We analyze the drain induced barrier lowering (DIBL) of a negative capacitance (NC) FET using a gate structure such as a metal-ferroelectric-metal-insulator-semiconductor (MFMIS) for a junctionless double gate (JLDG) FET. NC FETs show negative DIBL characteristics according to the ferroelectric thickness. To elucidate the cause of such negative DIBL, the DIBLs are obtained by the second derivative method using the 2D potential distribution and drain current-gate voltage curve. The analytical DIBL model is also presented for easy observation of the DIBL of NC FET. It has been found that the results of this analytical DIBL model are very similar to those of the second derivative method. The results of this analytical DIBL model are also in good agreement with the results of TCAD. As a result, it was found that the negative DIBL phenomenon is caused by the change according to the drain voltage of the charge existing in the ferroelectric material. The negative DIBL phenomenon easily occurred as the ferroelectric thickness increased and the thickness of SiO2 used as an insulator decreases.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligence-based optimized cognitive radio routing for medical data transmission using IoT 基于智能优化的认知无线电路由,用于物联网医疗数据传输
AIMS Electronics and Electrical Engineering Pub Date : 2022-01-01 DOI: 10.3934/electreng.2022014
B. Kumar, Jai Sukh Paul Singh
{"title":"Intelligence-based optimized cognitive radio routing for medical data transmission using IoT","authors":"B. Kumar, Jai Sukh Paul Singh","doi":"10.3934/electreng.2022014","DOIUrl":"https://doi.org/10.3934/electreng.2022014","url":null,"abstract":"The Internet of Things (IoT) is considered an effective wireless communication, where the main challenge is to manage energy efficiency, especially in cognitive networks. The data communication protocol is a broadly used approach in a wireless network based IoT. Cognitive Radio (CR) networks are mainly concentrated on battery-powered devices for highly utilizing the data regarding the spectrum and routing allocation, dynamic spectrum access, and spectrum sharing. Data aggregation and clustering are the best solutions for enhancing the energy efficiency of the network. Most researchers have focused on solving the problems related to Cognitive Radio Sensor Networks (CRSNs) in terms of Spectrum allocation, Quality of Service (QoS) optimization, delay reduction, and so on. However, a very small amount of research work has focused on energy restriction problems by using the switching and channel sensing mechanism. As this energy validation is highly challenging due to dependencies on various factors like scheduling priority to the registered users, the data loss rate of unlicensed channels, and the possibilities of accessing licensed channels. Many IoT-based models involve energy-constrained devices and data aggregation along with certain optimization approaches for improving utilization. In this paper, the cognitive radio framework is developed for medical data transmission over the Internet of Medical Things (IoMT) network. The energy-efficient cluster-based data transmission is done through cluster head selection using the hybrid optimization algorithm named Spreading Rate-based Coronavirus Herding-Grey Wolf Optimization (SR-CHGWO). The network lifetime is improved with a cognitive- routing based on IoT framework to enhance the efficiency of the data transmission through the multi-objective function. This multi-objective function is derived using constraints like energy, throughput, data rate, node power, and outage probability delay of the proposed framework. The simulation experiments show that the developed framework enhances the energy efficiency using the proposed algorithm when compared to the conventional techniques.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly sensitive optical MEMS based photonic biosensor for colon tissue detection 用于结肠组织检测的高灵敏度光学MEMS光子生物传感器
AIMS Electronics and Electrical Engineering Pub Date : 2022-01-01 DOI: 10.3934/electreng.2022017
M. V. Raghunathareddy, G. Indumathi, K. R. Niranjan
{"title":"Highly sensitive optical MEMS based photonic biosensor for colon tissue detection","authors":"M. V. Raghunathareddy, G. Indumathi, K. R. Niranjan","doi":"10.3934/electreng.2022017","DOIUrl":"https://doi.org/10.3934/electreng.2022017","url":null,"abstract":"Biological component of cells, protein has been effectively studied and investigated using biological sensors. Photonic crystal-based sensor is highly sensitive optical nanostructure it can be manipulated to affect the motion of photon for users' application. In the proposed work microcavity based photonic crystal biosensor has been designed and investigated for its different optical sensing evaluation parameters such as transmission efficiency, sensitivity, Q factor and peak resonant wavelengths. Sensor is designed and analyzed for early detection of colon cancer tissues in blood. Radius of defect micropillar has been increased from 0.16 µm to 0.19 µm. High Quality factor 10232 has been achieved with the micro pillar radius of 0.17 µm and sensitivity 700nm/RIU. Similarly, radius of 0.16 µm, 0.18 µm and 0.19 µm has attained quality factor and sensitivity such as 5324, 7232, 8343 and 111 nm/RIU, 320 nm/RIU and 340 nm/RIU respectively. Compared other work in literature, proposed work has shown better sensing capability. Designed sensor has shown remarkable output and feasibility for future fabrication.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved DTC strategy with fuzzy logic controller for induction motor driven electric vehicle 基于模糊控制器的感应电机驱动电动汽车直接转矩控制改进策略
AIMS Electronics and Electrical Engineering Pub Date : 2022-01-01 DOI: 10.3934/electreng.2022018
Sahoo Anjan Ku., Jena Ranjan Ku.
{"title":"Improved DTC strategy with fuzzy logic controller for induction motor driven electric vehicle","authors":"Sahoo Anjan Ku., Jena Ranjan Ku.","doi":"10.3934/electreng.2022018","DOIUrl":"https://doi.org/10.3934/electreng.2022018","url":null,"abstract":"In the near future, zero-emission transportation is anticipated to be implemented in an effort to reduce the major pollutants caused by road transportation. This enormous endeavor will be impossible until all modes of transport are electrified. The induction motor-fed direct torque controller is widely used for EV applications due to its fast torque response and simplicity. However, ripples in torque and flux and current harmonics are the major issues related to DTC. The fuzzy-based DTC replaces the hysteresis comparators and the switching table with fuzzy logic blocks to realize fuzzy DTC control, which improves the system's performance. This paper presents an enhanced fuzzy logic control strategy of induction motor for electric vehicle applications. The main objective is to enhance the system's performance by reducing torque and flux ripples. Both the conventional and fuzzy-based DTC are simulated with MATLAB/SIMULINK, followed by a comparative assessment to validate the effectiveness of the proposed approach for both steady-state and transient operations. The results indicate improvements in torque ripple, flux ripple, and speed ripples by 69%, 10%, and 85%, respectively. Due to the reduction in ripples, there is also an improvement in the THD of the stator current by 17%. During transient, an average improvement of integral square error for torque and speed is 8% and 12%, respectively. Further, the proposed method is validated using EUDC and HWFET drive cycles, demonstrating a reduction in battery energy demand.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A novel approach for the classification of diabetic maculopathy using discrete wavelet transforms and a support vector machine 基于离散小波变换和支持向量机的糖尿病黄斑病变分类新方法
AIMS Electronics and Electrical Engineering Pub Date : 2022-01-01 DOI: 10.3934/electreng.2023001
M. Bangar, P. Chaudhary
{"title":"A novel approach for the classification of diabetic maculopathy using discrete wavelet transforms and a support vector machine","authors":"M. Bangar, P. Chaudhary","doi":"10.3934/electreng.2023001","DOIUrl":"https://doi.org/10.3934/electreng.2023001","url":null,"abstract":"The role of diabetes mellitus in deteriorating the visual health of diabetic subjects has been affirmed precisely. The study of morphological features near the macular region is the most common method of investigating the impairment rate. The general mode of diagnosis carried out by manual inspection of fundus imaging, is less effective and slow. The goal of this study is to provide a novel approach to classify optical coherence tomography images effectively and efficiently. discrete wavelet transform and fast fourier transform are utilized to extract features, and a kernel-based support vector machine is used as classifier. To improve image contrast, histogram equalization is performed. Segmentation of the enhanced images is performed using k-means clustering. The hybrid feature extraction technique comprising the discrete wavelet transform and fast fourier transform renders novelty to the study. In terms of classification accuracy, the system's efficiency is compared to that of earlier available techniques. The suggested approach attained an overall accuracy of 96.46 % over publicly available datasets. The classifier accuracy of the system is found to be better than the performance of the discrete wavelet transform with self organizing maps and support vector machines with a linear kernel.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compact EBG structure for ground bounce noise suppression in high-speed digital systems 用于高速数字系统地弹跳噪声抑制的紧凑EBG结构
AIMS Electronics and Electrical Engineering Pub Date : 2022-01-01 DOI: 10.3934/electreng.2022008
Vasudevan Karuppiah, UmaMaheswari Gurusamy
{"title":"Compact EBG structure for ground bounce noise suppression in high-speed digital systems","authors":"Vasudevan Karuppiah, UmaMaheswari Gurusamy","doi":"10.3934/electreng.2022008","DOIUrl":"https://doi.org/10.3934/electreng.2022008","url":null,"abstract":"This paper proposes Inductive Enhanced-Electromagnetic Bandgap (IE-EBG) structure to suppress the Ground Bounce Noise (GBN) for high-speed digital system applications. The GBN excited between the power and ground plane pair could be a source of interference to the adjacent analog IC's on the same PCB (or) nearby devices because of radiated emission from the PCB edges. Hence, it must be suppressed at the PCB level. The proposed two-dimensional IE-EBG patterned power plane suppressed the GBN effectively over a broad frequency range. The four unit-cell IE-EBG provides a -40 dB noise suppression bandwidth of 13.567 GHz. With a substantial increment in the overall area, the nine unit-cell IE-EBG provides a -50 dB bandwidth of 19.02 GHz. The equivalent circuit modeling was developed for nine unit-cell IE-EBG and results are verified with the 3D EM simulation results. In addition, dispersion analysis was performed on the IE-EBG unit-cell to validate the lowest cut-off frequency and bandgap range. The prototype model of the proposed IE-EBG is fabricated and tested. The measured and simulated results are compared; a negligible variation is observed between them. In a multilayer PCB, the solid power plane is replaced with the 1 x 4 IE-EBG power plane and its impact on high-speed data transmission is analyzed with single-ended/differential signaling. The embedded IE-EBG with differential signaling provides optimum MEO and MEW values of 0.928 V, 0.293 ns for a random binary sequence with the 0.1 ns rise-time. Compared to single-ended signaling, embedded IE-EBG with differential signaling maintain good signal integrity and supports high-speed data transmission.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Internet of Things for smart energy systems: A review on its applications, challenges and future trends 智能能源系统的物联网:应用、挑战和未来趋势综述
AIMS Electronics and Electrical Engineering Pub Date : 2022-01-01 DOI: 10.3934/electreng.2023004
E. F. Orumwense, K. Abo-Al-Ez
{"title":"Internet of Things for smart energy systems: A review on its applications, challenges and future trends","authors":"E. F. Orumwense, K. Abo-Al-Ez","doi":"10.3934/electreng.2023004","DOIUrl":"https://doi.org/10.3934/electreng.2023004","url":null,"abstract":"Internet of Things (IoT) is a terminology used for a mixed connection of heterogeneous objects to the internet and to each other with the employment of recent technological and communication infrastructures. Its incorporation into engineering systems have gradually become very popular in recent times as it promises to transform and ease the life of end users. The use of IoT in smart energy systems (SES) facilitates an ample offer of variety of applications that transverses through a wide range of areas in energy systems. With the numerous benefits that includes unmatched fast communication between subsystems, the maximization of energy use, the decrease in environmental impacts and a boost in the dividends of renewable energies, IoT has grown into an emerging innovative technology to be integrated into smart energy systems. In this work, we have provided an overview of the link between SES, IoT and Internet of Energy (IoE). The main applications of IoT in smart energy systems consisting of smart industries, smart homes and buildings, and smart cities are explored and analyzed. The paper also explores the challenges limiting the employment of IoT technologies in SES and the possible remedies to these challenges. In addition, the future trends of this technology, its research direction and reasons why industry should adopt it are also addressed. The aim of this work is to furnish researchers in this field, decision and energy policy makers, energy economist and energy administrators with a possible literature outline on the roles and impacts of IoT technology in smart energy systems.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Power line communication: A review on couplers and channel characterization 电力线通信:耦合器和信道特性的综述
AIMS Electronics and Electrical Engineering Pub Date : 2022-01-01 DOI: 10.3934/electreng.2022016
M. Giraneza, K. Abo-Al-Ez
{"title":"Power line communication: A review on couplers and channel characterization","authors":"M. Giraneza, K. Abo-Al-Ez","doi":"10.3934/electreng.2022016","DOIUrl":"https://doi.org/10.3934/electreng.2022016","url":null,"abstract":"Powerline communication is gaining momentum with the rise of the smart grid, the Internet of Things as part of the 4th industrial revolution and associated applications such as transportation and energy efficiency. Coupling and channel characterization are essential parts of a power-line communication system. Therefore, understanding these components allows performance evaluation and prediction of the system. This paper presents an entire review of couplers and channel characterization modeling techniques used in narrow and broadband power-line communication systems. Types and applications of different couplers are presented; a review of different power-line communication channel modeling techniques and the fundamentals allows a clear understanding of factors influencing or affecting the signal propagation through the channel. The purpose of this review is to guide researchers and system designers looking for literature resources on couplers and channel characterization for power-line communication applications.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信