{"title":"Contactless temperature and distance measuring device: A low-cost, novel infrared -based","authors":"Abhijeet Kumar, Arpit Kumar","doi":"10.3934/electreng.2022004","DOIUrl":"https://doi.org/10.3934/electreng.2022004","url":null,"abstract":"This work eases the feasibility of infrared thermometer application and reliability to introduce a novel design with upgraded applications & functions. The custom-designed compact device \"Badge\" structured comprises the operative methods through the electronic packages of an optimal level. The physical and social distance measured by the ToF (Time of Flight) infrared laser sensor within 1 m from the subject and the measuring equipment (MLX90632 SMD QFN and VL530LX ToF). When the distance is not maintained, or the physical distance condition is not met, the flashing LED, or vibration should trigger an indication (warning for physical distancing and alteration for pyrexia warning, respectively). Statistical analysis and simulation-based studies criticized the accuracy of ±0.5°F and relational model of the independent and dependent variable for this device with significant R2 = 0.99 and P < = 1; values with the lowest accuracy error of ±0.2°F and least residual sum of squares 0.01462 values. The portable, lightweight, and dynamic body temperature monitoring altered the application from static to continuous, complete structural design. This alternative provides the best technique to combine worn (personnel) medical devices with primary healthcare instruments to help body temperature measurements that are not contactable, fast, and accurate. It builds a way of processing through the protocol Covid-19.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dermatology disease prediction based on firefly optimization of ANFIS classifier","authors":"J. Rajeshwari, M. Sughasiny","doi":"10.3934/electreng.2022005","DOIUrl":"https://doi.org/10.3934/electreng.2022005","url":null,"abstract":"The rate of increase in skin cancer incidences has become worrying in recent decades. This is because of constraints like eventual draining of ozone levels, air's defensive channel capacity and progressive arrival of Sun-oriented UV radiation to the Earth's surface. The failure to diagnose skin cancer early is one of the leading causes of death from the disease. Manual detection processes consume more time well as not accurate, so the researchers focus on developing an automated disease classification method. In this paper, an automated skin cancer classification is achieved using an adaptive neuro-fuzzy inference system (ANFIS). A hybrid feature selection technique was developed to choose relevant feature subspace from the dermatology dataset. ANFIS analyses the dataset to give an effective outcome. ANFIS acts as both fuzzy and neural network operations. The input is converted into a fuzzy value using the Gaussian membership function. The optimal set of variables for the Membership Function (MF) is generated with the help of the firefly optimization algorithm (FA). FA is a new and strong meta-heuristic algorithm for solving nonlinear problems. The proposed method is designed and validated in the Python tool. The proposed method gives 99% accuracy and a 0.1% false-positive rate. In addition, the proposed method outcome is compared to other existing methods like improved fuzzy model (IFM), fuzzy model (FM), random forest (RF), and Naive Byes (NB).","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Rao, B. K. Reddy, C. R. Reddy, K. Kumar, Jakka Yeshwanth Reddy
{"title":"Implementation of on-chip high precision oscillators with RC and LC using digital compensation technique","authors":"K. Rao, B. K. Reddy, C. R. Reddy, K. Kumar, Jakka Yeshwanth Reddy","doi":"10.3934/electreng.2022012","DOIUrl":"https://doi.org/10.3934/electreng.2022012","url":null,"abstract":"High precision oscillators became a significant call for both designer and testing engineers. Modern vibrators are being utilized in a variety of circuits, and accessibility to a wide range of frequencies is of the utmost importance in all research establishments. To produce various frequencies, utilizing a single gadget is very challenging for the designers. This article aims to provide the low frequency (RC) oscillator and high frequency (LC) oscillators with various output frequencies on a single chip. The use of both oscillators is necessary due to the fact that there are currently no such devices on the market, which makes it necessary to avoid using bulky recurrence generator hardware in order to facilitate rapid exploration and plausibility research. Here, a RC oscillator with high current accuracy and a LC oscillator with low force have been used to design a voltage controlled oscillator (VCO) IC by utilizing the Cadence 45 nm technology. This particular VCO IC is able to obtain two different frequencies with reasonable precision. Further, execution is completed by utilizing exclusive requirement inconsistent message format designing. This proposed work can be used at both audio frequency and radio frequency ranges from megahertz (MHz) to gigahertz (GHz).","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modified PNN classifier for diagnosing skin cancer severity condition using SMO optimization technique","authors":"J. Rajeshwari, M. Sughasiny","doi":"10.3934/electreng.2023005","DOIUrl":"https://doi.org/10.3934/electreng.2023005","url":null,"abstract":"Skin cancer is a pandemic disease now worldwide, and it is responsible for numerous deaths. Early phase detection is pre-eminent for controlling the spread of tumours throughout the body. However, existing algorithms for skin cancer severity detections still have some drawbacks, such as the analysis of skin lesions is not insignificant, slightly worse than that of dermatologists, and costly and time-consuming. Various machine learning algorithms have been used to detect the severity of the disease diagnosis. But it is more complex when detecting the disease. To overcome these issues, a modified Probabilistic Neural Network (MPNN) classifier has been proposed to determine the severity of skin cancer. The proposed method contains two phases such as training and testing the data. The collected features from the data of infected people are used as input to the modified PNN classifier in the current model. The neural network is also trained using Spider Monkey Optimization (SMO) approach. For analyzing the severity level, the classifier predicts four classes. The degree of skin cancer is determined depending on classifications. According to findings, the system achieved a 0.10% False Positive Rate (FPR), 0.03% error and 0.98% accuracy, while previous methods like KNN, NB, RF and SVM have accuracies of 0.90%, 0.70%, 0.803% and 0.86% correspondingly, which is lesser than the proposed approach.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel approach for the classification of diabetic maculopathy using discrete wavelet transforms and a support vector machine","authors":"M. Bangar, P. Chaudhary","doi":"10.3934/electreng.2023001","DOIUrl":"https://doi.org/10.3934/electreng.2023001","url":null,"abstract":"The role of diabetes mellitus in deteriorating the visual health of diabetic subjects has been affirmed precisely. The study of morphological features near the macular region is the most common method of investigating the impairment rate. The general mode of diagnosis carried out by manual inspection of fundus imaging, is less effective and slow. The goal of this study is to provide a novel approach to classify optical coherence tomography images effectively and efficiently. discrete wavelet transform and fast fourier transform are utilized to extract features, and a kernel-based support vector machine is used as classifier. To improve image contrast, histogram equalization is performed. Segmentation of the enhanced images is performed using k-means clustering. The hybrid feature extraction technique comprising the discrete wavelet transform and fast fourier transform renders novelty to the study. In terms of classification accuracy, the system's efficiency is compared to that of earlier available techniques. The suggested approach attained an overall accuracy of 96.46 % over publicly available datasets. The classifier accuracy of the system is found to be better than the performance of the discrete wavelet transform with self organizing maps and support vector machines with a linear kernel.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compact EBG structure for ground bounce noise suppression in high-speed digital systems","authors":"Vasudevan Karuppiah, UmaMaheswari Gurusamy","doi":"10.3934/electreng.2022008","DOIUrl":"https://doi.org/10.3934/electreng.2022008","url":null,"abstract":"This paper proposes Inductive Enhanced-Electromagnetic Bandgap (IE-EBG) structure to suppress the Ground Bounce Noise (GBN) for high-speed digital system applications. The GBN excited between the power and ground plane pair could be a source of interference to the adjacent analog IC's on the same PCB (or) nearby devices because of radiated emission from the PCB edges. Hence, it must be suppressed at the PCB level. The proposed two-dimensional IE-EBG patterned power plane suppressed the GBN effectively over a broad frequency range. The four unit-cell IE-EBG provides a -40 dB noise suppression bandwidth of 13.567 GHz. With a substantial increment in the overall area, the nine unit-cell IE-EBG provides a -50 dB bandwidth of 19.02 GHz. The equivalent circuit modeling was developed for nine unit-cell IE-EBG and results are verified with the 3D EM simulation results. In addition, dispersion analysis was performed on the IE-EBG unit-cell to validate the lowest cut-off frequency and bandgap range. The prototype model of the proposed IE-EBG is fabricated and tested. The measured and simulated results are compared; a negligible variation is observed between them. In a multilayer PCB, the solid power plane is replaced with the 1 x 4 IE-EBG power plane and its impact on high-speed data transmission is analyzed with single-ended/differential signaling. The embedded IE-EBG with differential signaling provides optimum MEO and MEW values of 0.928 V, 0.293 ns for a random binary sequence with the 0.1 ns rise-time. Compared to single-ended signaling, embedded IE-EBG with differential signaling maintain good signal integrity and supports high-speed data transmission.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Internet of Things for smart energy systems: A review on its applications, challenges and future trends","authors":"E. F. Orumwense, K. Abo-Al-Ez","doi":"10.3934/electreng.2023004","DOIUrl":"https://doi.org/10.3934/electreng.2023004","url":null,"abstract":"Internet of Things (IoT) is a terminology used for a mixed connection of heterogeneous objects to the internet and to each other with the employment of recent technological and communication infrastructures. Its incorporation into engineering systems have gradually become very popular in recent times as it promises to transform and ease the life of end users. The use of IoT in smart energy systems (SES) facilitates an ample offer of variety of applications that transverses through a wide range of areas in energy systems. With the numerous benefits that includes unmatched fast communication between subsystems, the maximization of energy use, the decrease in environmental impacts and a boost in the dividends of renewable energies, IoT has grown into an emerging innovative technology to be integrated into smart energy systems. In this work, we have provided an overview of the link between SES, IoT and Internet of Energy (IoE). The main applications of IoT in smart energy systems consisting of smart industries, smart homes and buildings, and smart cities are explored and analyzed. The paper also explores the challenges limiting the employment of IoT technologies in SES and the possible remedies to these challenges. In addition, the future trends of this technology, its research direction and reasons why industry should adopt it are also addressed. The aim of this work is to furnish researchers in this field, decision and energy policy makers, energy economist and energy administrators with a possible literature outline on the roles and impacts of IoT technology in smart energy systems.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Power line communication: A review on couplers and channel characterization","authors":"M. Giraneza, K. Abo-Al-Ez","doi":"10.3934/electreng.2022016","DOIUrl":"https://doi.org/10.3934/electreng.2022016","url":null,"abstract":"Powerline communication is gaining momentum with the rise of the smart grid, the Internet of Things as part of the 4th industrial revolution and associated applications such as transportation and energy efficiency. Coupling and channel characterization are essential parts of a power-line communication system. Therefore, understanding these components allows performance evaluation and prediction of the system. This paper presents an entire review of couplers and channel characterization modeling techniques used in narrow and broadband power-line communication systems. Types and applications of different couplers are presented; a review of different power-line communication channel modeling techniques and the fundamentals allows a clear understanding of factors influencing or affecting the signal propagation through the channel. The purpose of this review is to guide researchers and system designers looking for literature resources on couplers and channel characterization for power-line communication applications.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Abanay, L. Masmoudi, M. El Ansari, J. Gonzalez-Jimenez, Francisco-Angel Moreno
{"title":"LIDAR-based autonomous navigation method for an agricultural mobile robot in strawberry greenhouse: AgriEco Robot","authors":"A. Abanay, L. Masmoudi, M. El Ansari, J. Gonzalez-Jimenez, Francisco-Angel Moreno","doi":"10.3934/electreng.2022019","DOIUrl":"https://doi.org/10.3934/electreng.2022019","url":null,"abstract":"This paper presents an autonomous navigation method for an agricultural mobile robot \"AgriEco Robot\", with four-wheel-drive and embedded perception sensors. The proposed method allows an accurate guidance between strawberry crop rows while automatically spraying pesticides, as well as detecting the end and switching to the next rows. The main control system was developed using Robot Operating System (ROS) based on a 2D LIDAR sensor. The acquired 2D point clouds data is processed to estimate the robot's heading and lateral offset relative to crop rows. A motion controller is incorporated to ensure the developed autonomous navigation method. Performance in terms of accuracy of the autonomous navigation has been evaluated in real-world conditions within strawberry greenhouses, proving its usefulness for automatic pesticide spraying.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flexible ku/k band frequency reconfigurable bandpass filter","authors":"Ambati Navya, G. Immadi, M. Venkata Narayana","doi":"10.3934/electreng.2022002","DOIUrl":"https://doi.org/10.3934/electreng.2022002","url":null,"abstract":"The proposed reconfigurable BPF satisfies the International Telecommunication Unionos (ITU) region 3 spectrum requirement. In transmit mode, the frequency range 11.41-12.92 GHz is used by the direct broadcast service (DBS) and the fixed satellite service (FSS). Direct broadcast service (DBS) in reception mode employs 11.7-12.2 GHz and 17.3-17.8 GHz frequency ranges. Frequency reconfigurable filters are popular because they can cover wide range of frequencies, reducing system cost and space. Another emerging trend is electronic component flexibility or conformability, which allows them to be mounted on non-planar objects and are used in wearable applications. This project contains a frequency-reconfigurable BPF that has been entirely printed on a flexible polimide substrate. Frequency reconfigurability is obtained by using a pin diode HSCH 5318 and it is used to switch between 12 GHz and 18 GHz. The prototype reconfigurable BPF is highly compact and low-cost due to the flexible polimide substrate and the measured results are promising and match the simulated results well.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70222551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}