Analysis of drain induced barrier lowering for junctionless double gate MOSFET using ferroelectric negative capacitance effect

Q3 Engineering
H. Jung
{"title":"Analysis of drain induced barrier lowering for junctionless double gate MOSFET using ferroelectric negative capacitance effect","authors":"H. Jung","doi":"10.3934/electreng.2023003","DOIUrl":null,"url":null,"abstract":"We analyze the drain induced barrier lowering (DIBL) of a negative capacitance (NC) FET using a gate structure such as a metal-ferroelectric-metal-insulator-semiconductor (MFMIS) for a junctionless double gate (JLDG) FET. NC FETs show negative DIBL characteristics according to the ferroelectric thickness. To elucidate the cause of such negative DIBL, the DIBLs are obtained by the second derivative method using the 2D potential distribution and drain current-gate voltage curve. The analytical DIBL model is also presented for easy observation of the DIBL of NC FET. It has been found that the results of this analytical DIBL model are very similar to those of the second derivative method. The results of this analytical DIBL model are also in good agreement with the results of TCAD. As a result, it was found that the negative DIBL phenomenon is caused by the change according to the drain voltage of the charge existing in the ferroelectric material. The negative DIBL phenomenon easily occurred as the ferroelectric thickness increased and the thickness of SiO2 used as an insulator decreases.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Electronics and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/electreng.2023003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the drain induced barrier lowering (DIBL) of a negative capacitance (NC) FET using a gate structure such as a metal-ferroelectric-metal-insulator-semiconductor (MFMIS) for a junctionless double gate (JLDG) FET. NC FETs show negative DIBL characteristics according to the ferroelectric thickness. To elucidate the cause of such negative DIBL, the DIBLs are obtained by the second derivative method using the 2D potential distribution and drain current-gate voltage curve. The analytical DIBL model is also presented for easy observation of the DIBL of NC FET. It has been found that the results of this analytical DIBL model are very similar to those of the second derivative method. The results of this analytical DIBL model are also in good agreement with the results of TCAD. As a result, it was found that the negative DIBL phenomenon is caused by the change according to the drain voltage of the charge existing in the ferroelectric material. The negative DIBL phenomenon easily occurred as the ferroelectric thickness increased and the thickness of SiO2 used as an insulator decreases.
利用铁电负电容效应降低无结双栅极MOSFET漏极感应势垒的分析
我们分析了采用金属-铁电-金属-绝缘体-半导体(MFMIS)等栅极结构的无结双栅场效应管(JLDG)的负电容场效应管(NC)的漏极诱导势垒降低(DIBL)。根据铁电厚度的不同,NC场效应管表现出负的DIBL特性。为了阐明这种负DIBL的原因,利用二维电位分布和漏极电流-栅极电压曲线,采用二阶导数法得到了DIBL。为了便于观察NC场效应管的DIBL,还提出了解析DIBL模型。结果表明,该解析型DIBL模型的计算结果与二阶导数法的计算结果非常相似。该分析DIBL模型的结果与TCAD的结果也很吻合。结果发现,负DIBL现象是由于铁电材料中电荷的漏极电压随漏极电压的变化而引起的。随着铁电厚度的增加和作为绝缘子的SiO2厚度的减小,容易出现负DIBL现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Electronics and Electrical Engineering
AIMS Electronics and Electrical Engineering Engineering-Control and Systems Engineering
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信