The InnovationPub Date : 2024-06-21DOI: 10.1016/j.xinn.2024.100662
Aimei Zhou, Zhecheng Sun, Lei Sun
{"title":"Stable organic radical qubits and their applications in quantum information science","authors":"Aimei Zhou, Zhecheng Sun, Lei Sun","doi":"10.1016/j.xinn.2024.100662","DOIUrl":"https://doi.org/10.1016/j.xinn.2024.100662","url":null,"abstract":"The past century has witnessed the flourishing of organic radical chemistry. Stable organic radicals are highly valuable for quantum technologies thanks to their inherent room temperature quantum coherence, atomic-level designability, and fine tunability. In this comprehensive review, we highlight the potential of stable organic radicals as high-temperature qubits and explore their applications in quantum information science, which remain largely underexplored. Firstly, we summarize known spin dynamic properties of stable organic radicals and examine factors that influence their electron spin relaxation and decoherence times. This examination reveals their design principles and optimal operating conditions. We further discuss their integration in solid-state materials and surface structures, and present their state-of-the-art applications in quantum computing, quantum memory, and quantum sensing. Finally, we analyze the primary challenges associated with stable organic radical qubits and provide tentative insights to future research directions.","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"61 1","pages":""},"PeriodicalIF":32.1,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The InnovationPub Date : 2024-06-17DOI: 10.1016/j.xinn.2024.100658
Brett J. Kagan, Michael Mahlis, Anjali Bhat, Josh Bongard, Victor M. Cole, Phillip Corlett, Christopher Gyngell, Thomas Hartung, Bianca Jupp, Michael Levin, Tamra Lysaght, Nicholas Opie, Adeel Razi, Lena Smirnova, Ian Tennant, Peter Thestrup Wade, Ge Wang
{"title":"Toward a nomenclature consensus for diverse intelligent systems: Call for collaboration","authors":"Brett J. Kagan, Michael Mahlis, Anjali Bhat, Josh Bongard, Victor M. Cole, Phillip Corlett, Christopher Gyngell, Thomas Hartung, Bianca Jupp, Michael Levin, Tamra Lysaght, Nicholas Opie, Adeel Razi, Lena Smirnova, Ian Tennant, Peter Thestrup Wade, Ge Wang","doi":"10.1016/j.xinn.2024.100658","DOIUrl":"https://doi.org/10.1016/j.xinn.2024.100658","url":null,"abstract":"Disagreements about language use are common both between and within fields. Where interests require multidisciplinary collaboration or the field of research has the potential to impact society at large, it becomes critical to minimize these disagreements where possible. The development of diverse intelligent systems, regardless of the substrate (e.g., silicon vs. biology), is a case where both conditions are met. Significant advancements have occurred in the development of technology progressing toward these diverse intelligence systems. Whether progress is silicon based, such as the use of large language models, or through synthetic biology methods, such as the development of organoids, a clear need for a community-based approach to seeking consensus on nomenclature is now vital. Here, we welcome collaboration from the wider scientific community, proposing a pathway forward to achieving this intention, highlighting key terms and fields of relevance, and suggesting potential consensus-making methods to be applied.","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"26 1","pages":""},"PeriodicalIF":32.1,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The InnovationPub Date : 2024-06-17DOI: 10.1016/j.xinn.2024.100659
Zhiwei Chen, Hongru Zhou, Fanhao Kong, Zhaolin Dou, Min Wang
{"title":"Selectivity switch via tuning surface static electric field in photocatalytic alcohol conversion","authors":"Zhiwei Chen, Hongru Zhou, Fanhao Kong, Zhaolin Dou, Min Wang","doi":"10.1016/j.xinn.2024.100659","DOIUrl":"https://doi.org/10.1016/j.xinn.2024.100659","url":null,"abstract":"Photocatalysis has shown powerful capabilities in organic reactions, while controlling the selectivity is a long-standing goal and challenge due to the involvement of various radical intermediates. In this study, we have realized selectivity control in the photocatalytic conversion of alcohols via engineering the surface static electric field of the CdS semiconductor. By leveraging the Au–CdS interaction to adjust lattice strain, which influences the intensity of the surface static electric field, we altered the pathways of alcohol conversion. The increased intensity of the surface static electric field changed the activation pathways of the C–H/O–H bond, leading to the selective formation of targeted C/O-based radical intermediates and altering the selectivity from aldehydes to dimers. A wide range of alcohols, such as aromatic alcohol and thiophenol alcohol, were selectively converted into aldehyde or dimer. This work provides an effective strategy for selectively controlling reaction pathways by generating a surface electric field.","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"15 1","pages":""},"PeriodicalIF":32.1,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The InnovationPub Date : 2024-05-27DOI: 10.1016/j.xinn.2024.100650
Jianlong Xie, Qiyin Chen, Qin Xue, Igor F. Perepichka, Guohua Xie
{"title":"H2O2-modified NiOx for perovskite photovoltaic modules","authors":"Jianlong Xie, Qiyin Chen, Qin Xue, Igor F. Perepichka, Guohua Xie","doi":"10.1016/j.xinn.2024.100650","DOIUrl":"https://doi.org/10.1016/j.xinn.2024.100650","url":null,"abstract":"","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"52 1","pages":""},"PeriodicalIF":32.1,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The InnovationPub Date : 2024-04-26DOI: 10.1016/j.xinn.2024.100630
Xiuqi You, Ximin Chen, Yi Jiang, Huan Chen, Juan Liu, Zhen Wu, Weiling Sun, Jinren Ni
{"title":"6PPD-quinone affects the photosynthetic carbon fixation in cyanobacteria by extracting photosynthetic electrons","authors":"Xiuqi You, Ximin Chen, Yi Jiang, Huan Chen, Juan Liu, Zhen Wu, Weiling Sun, Jinren Ni","doi":"10.1016/j.xinn.2024.100630","DOIUrl":"https://doi.org/10.1016/j.xinn.2024.100630","url":null,"abstract":"Photosynthetic carbon fixation by cyanobacteria plays a pivotal role in the global carbon cycle but is threatened by environmental pollutants. To date, the impact of quinones, with electron shuttling properties, on cyanobacterial photosynthesis is unknown. Here, we present the first study investigating the effects of an emerging quinone pollutant, i.e., 6PPD-Q (N-(1,3-dimethylbutyl)-N′-phenyl--phenylenediamine-quinone), on the cyanobacterium sp. over a 400-generation exposure period. sp. exhibited distinct sequential phases, including hormesis, toxicity, and eventual recovery, throughout this exposure. Extensive evidence, including results of thylakoid membrane morphological and photosynthetic responses, carbon fixation rate, and key gene/protein analyses, strongly indicates that 6PPD-Q is a potent disruptor of photosynthesis. 6PPD-Q accepts photosynthetic electrons at the Q site in photosystem II (PSII) and the A site in PSI, leading to a sustained decrease in the carbon fixation of cyanobacteria after an ephemeral increase. This work revealed the specific mechanism by which 6PPD-Q interferes with photosynthetic carbon fixation in cyanobacteria, which is highly important for the global carbon cycle.","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"61 1","pages":""},"PeriodicalIF":32.1,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140882784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}