Electrochemical CO2 reduction to liquid fuels: Mechanistic pathways and surface/interface engineering of catalysts and electrolytes.

IF 25.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
The Innovation Pub Date : 2025-01-17 eCollection Date: 2025-03-03 DOI:10.1016/j.xinn.2025.100807
Xueying Li, Woojong Kang, Xinyi Fan, Xinyi Tan, Justus Masa, Alex W Robertson, Yousung Jung, Buxing Han, John Texter, Yuanfu Cheng, Bin Dai, Zhenyu Sun
{"title":"Electrochemical CO<sub>2</sub> reduction to liquid fuels: Mechanistic pathways and surface/interface engineering of catalysts and electrolytes.","authors":"Xueying Li, Woojong Kang, Xinyi Fan, Xinyi Tan, Justus Masa, Alex W Robertson, Yousung Jung, Buxing Han, John Texter, Yuanfu Cheng, Bin Dai, Zhenyu Sun","doi":"10.1016/j.xinn.2025.100807","DOIUrl":null,"url":null,"abstract":"<p><p>The high energy density of green synthetic liquid chemicals and fuels makes them ideal for sustainable energy storage and transportation applications. Electroreduction of carbon dioxide (CO<sub>2</sub>) directly into such high value-added chemicals can help us achieve a renewable C cycle. Such electrochemical reduction typically suffers from low faradaic efficiencies (FEs) and generates a mixture of products due to the complexity of controlling the reaction selectivity. This perspective summarizes recent advances in the mechanistic understanding of CO<sub>2</sub> reduction reaction pathways toward liquid products and the state-of-the-art catalytic materials for conversion of CO<sub>2</sub> to liquid C<sub>1</sub> (e.g., formic acid, methanol) and C<sub>2+</sub> products (e.g., acetic acid, ethanol, <i>n</i>-propanol). Many liquid fuels are being produced with FEs between 80% and 100%. We discuss the use of structure-binding energy relationships, computational screening, and machine learning to identify promising candidates for experimental validation. Finally, we classify strategies for controlling catalyst selectivity and summarize breakthroughs, prospects, and challenges in electrocatalytic CO<sub>2</sub> reduction to guide future developments.</p>","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"6 3","pages":"100807"},"PeriodicalIF":25.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2025.100807","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The high energy density of green synthetic liquid chemicals and fuels makes them ideal for sustainable energy storage and transportation applications. Electroreduction of carbon dioxide (CO2) directly into such high value-added chemicals can help us achieve a renewable C cycle. Such electrochemical reduction typically suffers from low faradaic efficiencies (FEs) and generates a mixture of products due to the complexity of controlling the reaction selectivity. This perspective summarizes recent advances in the mechanistic understanding of CO2 reduction reaction pathways toward liquid products and the state-of-the-art catalytic materials for conversion of CO2 to liquid C1 (e.g., formic acid, methanol) and C2+ products (e.g., acetic acid, ethanol, n-propanol). Many liquid fuels are being produced with FEs between 80% and 100%. We discuss the use of structure-binding energy relationships, computational screening, and machine learning to identify promising candidates for experimental validation. Finally, we classify strategies for controlling catalyst selectivity and summarize breakthroughs, prospects, and challenges in electrocatalytic CO2 reduction to guide future developments.

电化学二氧化碳还原为液体燃料:催化剂和电解质的机械途径和表面/界面工程。
绿色合成液体化学品和燃料的高能量密度使它们成为可持续能源储存和运输应用的理想选择。将二氧化碳(CO2)直接电还原成这种高附加值的化学物质可以帮助我们实现可再生的碳循环。由于控制反应选择性的复杂性,这种电化学还原通常具有较低的法拉第效率(FEs)并产生混合产物。这一观点总结了最近在对液态产物的CO2还原反应途径的机理理解以及将CO2转化为液态C1(如甲酸、甲醇)和C2+产物(如乙酸、乙醇、正丙醇)的最新催化材料方面的进展。许多液体燃料的FEs含量在80%到100%之间。我们讨论了结构结合能关系、计算筛选和机器学习的使用,以确定有希望的实验验证候选人。最后,我们对控制催化剂选择性的策略进行了分类,并总结了电催化CO2还原的突破、前景和挑战,以指导未来的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Innovation
The Innovation MULTIDISCIPLINARY SCIENCES-
CiteScore
38.30
自引率
1.20%
发文量
134
审稿时长
6 weeks
期刊介绍: The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals. The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide. Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信