{"title":"Molecular Dynamics of Adenomatous Polyposis Coli (APC) Protein and Its Inhibitors: A Special Insight to Colorectal Cancer.","authors":"Rina Kumari, Dilip Ghava, Rajeshwari Rathod, Amrita Kumari Panda, Sunil Kumar, Santosh Kumar Behera","doi":"10.1615/CritRevOncog.v30.i1.110","DOIUrl":"10.1615/CritRevOncog.v30.i1.110","url":null,"abstract":"<p><p>Colorectal cancer (CRC) initiates in colon or rectum is named as colon or rectal cancer, based on the site of inception. Various genetic alterations responsible for CRC include several signaling pathways. The Wingless/Wnt signaling pathway is the vital pathway which involved in the cancer pathogenesis. The hallmark of human CRC is adenomatous polyposis coli (APC), a negative regulator of the Wnt pathway. Mutations in the APC gene is a critical event in the development of human CRC which may lead to overexpression and stabilization of β-catenin that enters into the nucleus and helps in cancer cell proliferation. Significant obstacles to the therapeutic intervention of the Wnt signaling system still exist, despite promising approaches for the development of anti-cancer medicines targeting this route. The advent of computational techniques for cancer diagnosis, prognosis, and drug development has spurred the researchers to explore CRC at an early stage. This report had unzipped the importance of APC in Wnt signaling pathway associated with current advances and challenges in drug discovery for CRC. A combinatorial computational approach identified the potential anti-cancerous drug among XL888, 5-bromouracil, 5-fluorouracil, and Ganetespib against APC which is often treated as gatekeeper of CRC. This in silico investigation revealed Ganetespib as a potential anti-cancerous drug against APC for CRC therapeutics, which will be an alternative to chemotherapy. In vitro and in vivo studies are needed further to confirm the efficiency and evaluate potency of Ganetespib against the target.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"91-105"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting Breast Adenocarcinoma with Grangea maderaspatana Natural Compounds: A Molecular Docking and Pharmacokinetic Study.","authors":"Suraj Rajakumari, Pavithra Uppathi, Kallimakula Venkareddy Saritha","doi":"10.1615/CritRevOncog.2024056639","DOIUrl":"10.1615/CritRevOncog.2024056639","url":null,"abstract":"<p><p>Millions of women worldwide have breast cancer, a common and possibly fatal illness according to WHO Reports. A genetic mutation usually causes breast adenocarcinomas. Only 5-10% of cancers are induced by genetic mutations that develop with age, and the \"wear and tear\" of general life causes 85-90% of breast cancers. There are not many FDA-approved treatments available on the market right now, but those that have extreme toxicity and side effects restrict their use. Consequently, it is essential to use alternative medications to prevent breast cancer. The Grangea maderaspatana plant has a variety of natural chemicals that have been selected for their therapeutic characteristics. These properties include cytotoxicity, antispasmodic, anti-inflammatory, sedative, anti-flatulent, antipyretic, antidiarrheal, antioxidant, estrogenicity, and anti-implantation activity. The whole plant has been used in folk medicine since the classical era to treat an assortment of illnesses. However, using molecular docking, we evaluated the interactions between the natural substances of Grangea maderaspatana and the breast adenocarcinoma receptor (PDB-1M17). Two reference medications, anastrozole and tamoxifen, are utilized to investigate drug similarity and comparability. The compound - (-) Frullanolide has showed aromatase inhibitor (estrogen blocker) efficacy as tamoxifen and anastrozole, which is utilized in the treatment of breast cancer. Given their favorable pharmacokinetics (ADMET) characteristics, the majority of these substances show promise as therapeutic candidates for breast adenocarcinoma. The findings from this research could aid in the development of new and efficient treatment options for breast cancer, potentially improving patient outcomes and standards of living.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"107-117"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coralyne Targets the Catalytic Domain of MMP9: An In Silico and In Vitro Investigation.","authors":"Rahul Kumar Vempati, Rama Rao Malla","doi":"10.1615/CritRevOncog.2024056393","DOIUrl":"10.1615/CritRevOncog.2024056393","url":null,"abstract":"<p><p>Coralyne (COR) is a protoberberine-like isoquinoline alkaloid, and it is known for double-stranded (ds) DNA intercalation and topoisomerase inhibition. It can also sensitize cancer cells through various mechanisms. COR reduces the proliferation and migration of breast cancer cells by inhibiting the expression and activity of matrix metalloproteinase 9 (MMP9). However, the mechanism involved in the inhibitory activity of COR on MMP9 is not known. In the present study, in silico docking studies showed that COR binds to the active site of MMP9 catalytic domain (MMP9-CD) with considerable affinity. The binding affinity of COR to the MMP9-CD, estimated by three different web servers: CB Dock, Seam Dock, and PyRx, was found to be either -7.4 or -7.5 kcal/mol. Another web server that is routinely used for docking studies, Docking Server, has predicted a binding affinity of -5.9 kcal/mol. All four docking servers predicted the same binding site for COR within the MMP9-CD. Corroborating our docking results, molecular dynamic simulation studies have also shown that COR interacts with the same key active site amino acid residues of the MMP9-CD that are essential for its proteolytic function. Molecular mechanics with generalized born and surface area (MMGBSA) calculations using Schrodinger's prime module have shown that the binding free energy with which COR binds to MMP9 is -50 kcal/mol. It inhibited activity of recombinant human MMP9 activity and induced significant cytotoxicity and reduced the proliferation of MDA-MB 468 cells. Overall, our in silico and in vitro experiments show that COR potentially inhibits the activity of MMP9 by directly binding to the active site of its catalytic domain and possibly inhibits proliferation of MDA-MB 468 cells.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"71-89"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In Silico Analysis of Anti-Cancer Activity of Exopolysaccharide Isolated from Novel Pseudolagarobasidium acaciicola through Mass Production, Gel Permeation Separation, and Compositional Analysis.","authors":"Smita Behera, Nibha Gupta","doi":"10.1615/CritRevOncog.2024056496","DOIUrl":"10.1615/CritRevOncog.2024056496","url":null,"abstract":"<p><p>Bacteria, fungi, and algae are examples of microorganisms that synthesize polysaccharides, which are macromolecules that belong to the carbohydrate class. Production of polysaccharides represents an alternative to chemical and plant-derived compounds that could be used for human well-being which requires implementation of different methods standardized during the extraction and purification process. In the current investigation, Pseudolagarobasidium acaciicola, a novel fungal source of exopolysaccharide (EPS) was used which produced 2773.23 ± 100.39 mg/L when cultured under pre-optimized composed medium for 7 days under submerged culture conditions. Biochemical estimation of crude polysaccharides revealed the presence of carbohydrates, protein, reducing sugar, least phenolics and no flavonoids. Partially purified EPS (ppEPS) was subjected to monosaccharide analysis, molecular weight determination and structural confirmation using FTIR and LCMS analysis. The presence of maltose, fructose, xylose, galactose, glucose, raffinose and sorbose was evident in the ppEPS using HPTLC at 285 nm, with molecular weight of dextran 70 (tentative). Characterization revealed the presence of functional groups including -OH, -COO, C-O-C and C-O with compounds like cellulose, phosphate and 3'-Sialyl-N-acetyllactosamine with glycan as the main structural form. Hence, our hypothesis is: the fungal strain may be used as a novel source of glycan and explore more possibilities for enhanced recovery of EPS important for further drug discovery and formulation programs. Based on existing research on the anti-cancerous characteristics of β-Glycans, an in silico study was carried out, which suggested that β-Glycans may operate more potent against its receptor CLEC7A than the oral chemotherapy drug imatinib.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"119-135"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review Article: Fecal Microbiota Transplantation in Melanoma: Mechanisms-Mediated Enhancement of Anti-Tumor Immunotherapy.","authors":"William Ung, Benjamin Bonavida","doi":"10.1615/CritRevOncog.2025058249","DOIUrl":"https://doi.org/10.1615/CritRevOncog.2025058249","url":null,"abstract":"<p><p>The gut microbiota is integral to human health, influencing nutrition, metabolism, and immunity. Dysbiosis has been implicated in cancer development and resistance to therapies, highlighting the potential of microbiota modulation as a therapeutic strategy. Melanoma, while comprising only 1% of skin cancer diagnoses, accounts for over 80% of skin cancer related deaths, emphasizing the need for innovative approaches to enhance treatment efficacy. Although immune checkpoint inhibitors (ICIs) such as anti-programmed cell death protein (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA-4) blockade therapies have significantly improved survival for some melanoma patients, the majority fails to achieve durable responses and often develops long-term resistance to these treatments. Fecal microbiota transplantation (FMT) is emerging as a promising intervention to restore microbial balance and enhance treatment efficacy. This review explores the historical evolution and current applications of FMT in oncology, with a focus on its ability to modulate the gut microbiome, augment antitumor immunity, and overcome resistance to checkpoint blockade therapy in melanoma. Despite its promise, significant challenges remain, including ensuring the safety of the procedure, selecting suitable donors, and addressing regulatory hurdles. Future research aimed at optimizing FMT protocols, identifying key microbial strains, and understanding the mechanisms underlying microbiota-immune interactions will be essential to fully harness the potential of FMT as a transformative adjunct in cancer treatment.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 2","pages":"23-35"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144498243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of Benzimidazole Derivatives in Molecular Targets for Breast Cancer Treatment: A Comprehensive Review.","authors":"Pratima Katiyar, Kalpana, Aditi Srivastava, Chandra Mohan Singh","doi":"10.1615/CritRevOncog.2024056541","DOIUrl":"10.1615/CritRevOncog.2024056541","url":null,"abstract":"<p><p>This article provides a basic summary of computational research on benzimidazole and its molecular targets in breast cancer (BC) drug discovery. The drug development process is streamlined, expenses are decreased, and the possibility of finding successful therapies for this difficult illness is increased with the use of computational tools. The utilization of benzimidazole derivatives in medication research and discovery is discussed, along with the results of benzimidazole derivative-related clinical trials conducted against blood cancer during the previous five years. Additionally, it includes analysis of changes in structure and how they affect pharmacology. The structure-based method and other computational tools used in drug development are also covered, as well as the importance of structural information such as stereochemistry, physiological action, and the use of spectroscopic methods like NMR and X-ray crystallography in understanding the interactions between bioactive compounds and receptors. The article highlights the potential of benzimidazoles as bioactive heterocyclic molecules with various biological activities, including antimicrobial and anti-cancer properties.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"43-58"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Role of TAMs in the Regulation of Tumor Cell Resistance to Chemotherapy.","authors":"Ryan McWhorter, Benjamin Bonavida","doi":"10.1615/CritRevOncog.2024053667","DOIUrl":"10.1615/CritRevOncog.2024053667","url":null,"abstract":"<p><p>Tumor-associated macrophages (TAMs) are the predominant cell infiltrate in the immunosuppressive tumor microenvironment (TME). TAMs are central to fostering pro-inflammatory conditions, tumor growth, metastasis, and inhibiting therapy responses. Many cancer patients are innately refractory to chemotherapy and or develop resistance following initial treatments. There is a clinical correlation between the level of TAMs in the TME and chemoresistance. Hence, the pivotal role of TAMs in contributing to chemoresistance has garnered significant attention toward targeting TAMs to reverse this resistance. A prerequisite for such an approach requires a thorough understanding of the various underlying mechanisms by which TAMs inhibit response to chemotherapeutic drugs. Such mechanisms include enhancing drug efflux, regulating drug metabolism and detoxification, supporting cancer stem cell (CSCs) resistance, promoting epithelial-mesenchymal transition (EMT), inhibiting drug penetration and its metabolism, stimulating angiogenesis, impacting inhibitory STAT3/NF-κB survival pathways, and releasing specific inhibitory cytokines including TGF-β and IL-10. Accordingly, several strategies have been developed to overcome TAM-modulated chemoresistance. These include novel therapies that aim to deplete TAMs, repolarize them toward the anti-tumor M1-like phenotype, or block recruitment of monocytes into the TME. Current results from TAM-targeted treatments have been unimpressive; however, the use of TAM-targeted therapies in combination appears promising These include targeting TAMs with radiotherapy, chemotherapy, chemokine receptor inhibitors, immunotherapy, and loaded nanoparticles. The clinical limitations of these strategies are discussed.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"29 4","pages":"97-125"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}