In Silico Analysis of Anti-Cancer Activity of Exopolysaccharide Isolated from Novel Pseudolagarobasidium acaciicola through Mass Production, Gel Permeation Separation, and Compositional Analysis.

Q4 Biochemistry, Genetics and Molecular Biology
Smita Behera, Nibha Gupta
{"title":"In Silico Analysis of Anti-Cancer Activity of Exopolysaccharide Isolated from Novel Pseudolagarobasidium acaciicola through Mass Production, Gel Permeation Separation, and Compositional Analysis.","authors":"Smita Behera, Nibha Gupta","doi":"10.1615/CritRevOncog.2024056496","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria, fungi, and algae are examples of microorganisms that synthesize polysaccharides, which are macromolecules that belong to the carbohydrate class. Production of polysaccharides represents an alternative to chemical and plant-derived compounds that could be used for human well-being which requires implementation of different methods standardized during the extraction and purification process. In the current investigation, Pseudolagarobasidium acaciicola, a novel fungal source of exopolysaccharide (EPS) was used which produced 2773.23 ± 100.39 mg/L when cultured under pre-optimized composed medium for 7 days under submerged culture conditions. Biochemical estimation of crude polysaccharides revealed the presence of carbohydrates, protein, reducing sugar, least phenolics and no flavonoids. Partially purified EPS (ppEPS) was subjected to monosaccharide analysis, molecular weight determination and structural confirmation using FTIR and LCMS analysis. The presence of maltose, fructose, xylose, galactose, glucose, raffinose and sorbose was evident in the ppEPS using HPTLC at 285 nm, with molecular weight of dextran 70 (tentative). Characterization revealed the presence of functional groups including -OH, -COO, C-O-C and C-O with compounds like cellulose, phosphate and 3'-Sialyl-N-acetyllactosamine with glycan as the main structural form. Hence, our hypothesis is: the fungal strain may be used as a novel source of glycan and explore more possibilities for enhanced recovery of EPS important for further drug discovery and formulation programs. Based on existing research on the anti-cancerous characteristics of β-Glycans, an in silico study was carried out, which suggested that β-Glycans may operate more potent against its receptor CLEC7A than the oral chemotherapy drug imatinib.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"119-135"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Oncogenesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevOncog.2024056496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteria, fungi, and algae are examples of microorganisms that synthesize polysaccharides, which are macromolecules that belong to the carbohydrate class. Production of polysaccharides represents an alternative to chemical and plant-derived compounds that could be used for human well-being which requires implementation of different methods standardized during the extraction and purification process. In the current investigation, Pseudolagarobasidium acaciicola, a novel fungal source of exopolysaccharide (EPS) was used which produced 2773.23 ± 100.39 mg/L when cultured under pre-optimized composed medium for 7 days under submerged culture conditions. Biochemical estimation of crude polysaccharides revealed the presence of carbohydrates, protein, reducing sugar, least phenolics and no flavonoids. Partially purified EPS (ppEPS) was subjected to monosaccharide analysis, molecular weight determination and structural confirmation using FTIR and LCMS analysis. The presence of maltose, fructose, xylose, galactose, glucose, raffinose and sorbose was evident in the ppEPS using HPTLC at 285 nm, with molecular weight of dextran 70 (tentative). Characterization revealed the presence of functional groups including -OH, -COO, C-O-C and C-O with compounds like cellulose, phosphate and 3'-Sialyl-N-acetyllactosamine with glycan as the main structural form. Hence, our hypothesis is: the fungal strain may be used as a novel source of glycan and explore more possibilities for enhanced recovery of EPS important for further drug discovery and formulation programs. Based on existing research on the anti-cancerous characteristics of β-Glycans, an in silico study was carried out, which suggested that β-Glycans may operate more potent against its receptor CLEC7A than the oral chemotherapy drug imatinib.

通过大规模生产、凝胶渗透分离和成分分析对新型金针菇外多糖抗癌活性的硅晶分析。
细菌、真菌和藻类是合成多糖的微生物的例子,多糖是属于碳水化合物类的大分子。多糖的生产是化学和植物衍生化合物的一种替代品,可用于人类福祉,这需要在提取和纯化过程中实施不同的标准化方法。本实验以一种新型的胞外多糖(EPS)真菌为研究对象,在预先优化的组合培养基中培养7 d,产生2773.23±100.39 mg/L。对粗多糖进行生化分析,发现多糖中含有碳水化合物、蛋白质、还原糖,酚类物质最少,不含黄酮类化合物。部分纯化的EPS (pepps)进行单糖分析、分子量测定和FTIR和LCMS结构鉴定。在285 nm的HPTLC下发现了麦芽糖、果糖、木糖、半乳糖、葡萄糖、棉子糖和山梨糖的存在,分子量为葡聚糖70(推测)。表征表明,以聚糖为主要结构形式的纤维素、磷酸盐和3′-唾液酰- n -乙酰乳胺等化合物存在-OH、-COO、C-O- c和C-O等官能团。因此,我们的假设是:该真菌菌株可能作为一种新的聚糖来源,并探索更多的可能性,以提高EPS的回收率,这对进一步的药物发现和配方计划很重要。基于已有的对β-聚糖抗癌特性的研究,我们进行了一项硅片研究,结果表明β-聚糖对其受体CLEC7A的作用可能比口服化疗药物伊马替尼更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Critical Reviews in Oncogenesis
Critical Reviews in Oncogenesis Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
1.70
自引率
0.00%
发文量
17
期刊介绍: The journal is dedicated to extensive reviews, minireviews, and special theme issues on topics of current interest in basic and patient-oriented cancer research. The study of systems biology of cancer with its potential for molecular level diagnostics and treatment implies competence across the sciences and an increasing necessity for cancer researchers to understand both the technology and medicine. The journal allows readers to adapt a better understanding of various fields of molecular oncology. We welcome articles on basic biological mechanisms relevant to cancer such as DNA repair, cell cycle, apoptosis, angiogenesis, tumor immunology, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信