{"title":"Identification of Glucose-6-Phosphate Dehydrogenase (G6PD) Inhibitors by Cheminformatics Approach.","authors":"Srilatha Mundla, Madhu Sudhana Saddala","doi":"10.1615/CritRevOncog.2024056445","DOIUrl":"https://doi.org/10.1615/CritRevOncog.2024056445","url":null,"abstract":"<p><p>Glucose-6-phosphate dehydrogenase (G6PD) is an essential enzyme in the pentose phosphate pathway (PPP), a critical glucose metabolism pathway linked to cancer cell proliferation and metastasis. Inhibiting the PPP presents a promising approach to cancer treatment. The G6PD enzyme structure was obtained from the Protein Data Bank (PDB). The active site responsible for NADP+ binding was identified and used for structure-based pharmacophore design. This pharmacophore model was applied to the ZINC database to screen for small molecules. Molecular docking was accomplished using AutoDock Vina, and protein-ligand interactions were analyzed. Additionally, compounds were validated based on in silico ADMET properties to select the most promising candidates. A comprehensive screening and docking procedure identified several potential G6PD inhibitors. These compounds showed favorable interactions with the active site and met the criteria for optimal ADMET properties. The newly proposed G6PD inhibitors, with their potential to revolutionize cancer therapy, could serve as lead molecules for further research and development, inspiring the audience about the possibilities in cancer therapy.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"59-70"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine Learning Approaches for Neuroblastoma Risk Prediction and Stratification.","authors":"Ramakrishna Vadde, Manoj Kumar Gupta","doi":"10.1615/CritRevOncog.2024056447","DOIUrl":"https://doi.org/10.1615/CritRevOncog.2024056447","url":null,"abstract":"<p><p>Machine learning (ML) holds great promise in advancing risk prediction and stratification for neuroblastoma, a highly heterogeneous pediatric cancer. By utilizing large-scale biological and clinical data, ML models can detect complex patterns that traditional approaches often overlook, enabling more personalized treatments and better patient outcomes. Various ML techniques, such as support vector machines, random forests, and deep learning, have shown superior performance in predicting survival, relapse, and treatment responses in neuroblastoma patients compared to conventional methods. However, challenges like limited data size, model interpretability, data variability, and difficulties in clinical integration hinder broader adoption. Additionally, ethical concerns related to bias and privacy must be addressed. Future work should focus on improving data quality, enhancing model transparency, and conducting thorough clinical validation. With these advancements, ML has the potential to revolutionize neuroblastoma care by refining early diagnosis, risk assessment, and therapeutic decision-making.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"15-30"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interaction of Heat Shock Protein 90 (HSP90), Ganetespib, and 5-Fluorouracil by Computational Approach for Colorectal Cancer Therapy.","authors":"Yuvasri Golivi, Santosh Kumar Behera, Afroz Alam, Sujatha Peela","doi":"10.1615/CritRevOncog.2024056394","DOIUrl":"https://doi.org/10.1615/CritRevOncog.2024056394","url":null,"abstract":"<p><p>The heat shock protein 90 kDa (HSP90) is highly conserved across diverse species, including humans, and upregulated in various cancers. As a result, it has been identified as a promising target for advancing anticancer medicine. The introduction of combinatorial chemistry in drug discovery has emphasized the need to develop new technologies in screening, designing, decoding, synthesizing, and screening combinatorial drug libraries. The current investigation was carried out to report improved inhibition efficacy of ganetespib, fluorouracil (5-FU), and its combinatorial drug treatment (ganetespib + 5-FU) against the HSP90 molecular chaperone through an in silico approach. Both drugs and their combination are ATP-competitive inhibitors; they inhibit the HSP90α N-terminal and block the ATP binding site. The structural and functional basis and their combination were confirmed through molecular docking interaction with HSP90α. The inhibitors' conformational effects and their combination against the HSP90α protein were studied using powerful MD simulations. The key interacting residues of HSP90α with ganetespib, 5-FU, and ganetespib + 5-FU were identified via energy binding calculations and molecular dynamics. This study is the first to offer atomistic insights into the interaction between ganetespib, 5-FU, and ganetespib + 5-FU with the HSP90α protein N-terminal domain. The results of our in silico study will open better avenues for developing potential cancer inhibitors in the near future.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"31-42"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular Docking: An Emerging Tool for Target-Based Cancer Therapy.","authors":"Pavithra Uppathi, Suraj Rajakumari, Kallimakula Venkareddy Saritha","doi":"10.1615/CritRevOncog.2024056533","DOIUrl":"https://doi.org/10.1615/CritRevOncog.2024056533","url":null,"abstract":"<p><p>Molecular docking is a structure-based computational technique that plays a major role in drug discovery. Molecular docking enhances the efficacy of determining the metabolic interaction between two molecules, i.e., the small molecule (ligand) and the target molecule (protein), to find the best orientation of a ligand to its target molecule with minimal free energy in forming a stable complex. By stimulating drug-target interactions, docking helps identify small molecules that might inhibit cancer-promoting proteins, aiding in the development of novel targeted therapies. Molecular docking enables researchers to screen vast reorganization, identifying potential anti-cancer drugs with enhanced specificity and reduced toxicity. The growing importance of molecular docking underscores its potential to revolutionize cancer treatment by accelerating the identification of novel drugs and improving clinical outcomes. As a wide approach, this computational drug design technique can be considered more effective and timesaving than other cancer treatment methods. In this review, we showcase brief information on the role of molecular docking and its importance in cancer research for drug discovery and target identification. Therefore, in recent years, it can be concluded that molecular docking can be scrutinized as one of the novel strategies at the leading edge of cancer-targeting drug discovery.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular Dynamics of Adenomatous Polyposis Coli (APC) Protein and Its Inhibitors: A Special Insight to Colorectal Cancer.","authors":"Rina Kumari, Dilip Ghava, Rajeshwari Rathod, Amrita Kumari Panda, Sunil Kumar, Santosh Kumar Behera","doi":"10.1615/CritRevOncog.v30.i1.110","DOIUrl":"https://doi.org/10.1615/CritRevOncog.v30.i1.110","url":null,"abstract":"<p><p>Colorectal cancer (CRC) initiates in colon or rectum is named as colon or rectal cancer, based on the site of inception. Various genetic alterations responsible for CRC include several signaling pathways. The Wingless/Wnt signaling pathway is the vital pathway which involved in the cancer pathogenesis. The hallmark of human CRC is adenomatous polyposis coli (APC), a negative regulator of the Wnt pathway. Mutations in the APC gene is a critical event in the development of human CRC which may lead to overexpression and stabilization of β-catenin that enters into the nucleus and helps in cancer cell proliferation. Significant obstacles to the therapeutic intervention of the Wnt signaling system still exist, despite promising approaches for the development of anti-cancer medicines targeting this route. The advent of computational techniques for cancer diagnosis, prognosis, and drug development has spurred the researchers to explore CRC at an early stage. This report had unzipped the importance of APC in Wnt signaling pathway associated with current advances and challenges in drug discovery for CRC. A combinatorial computational approach identified the potential anti-cancerous drug among XL888, 5-bromouracil, 5-fluorouracil, and Ganetespib against APC which is often treated as gatekeeper of CRC. This in silico investigation revealed Ganetespib as a potential anti-cancerous drug against APC for CRC therapeutics, which will be an alternative to chemotherapy. In vitro and in vivo studies are needed further to confirm the efficiency and evaluate potency of Ganetespib against the target.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"91-105"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting Breast Adenocarcinoma with Grangea maderaspatana Natural Compounds: A Molecular Docking and Pharmacokinetic Study.","authors":"Suraj Rajakumari, Pavithra Uppathi, Kallimakula Venkareddy Saritha","doi":"10.1615/CritRevOncog.2024056639","DOIUrl":"https://doi.org/10.1615/CritRevOncog.2024056639","url":null,"abstract":"<p><p>Millions of women worldwide have breast cancer, a common and possibly fatal illness according to WHO Reports. A genetic mutation usually causes breast adenocarcinomas. Only 5-10% of cancers are induced by genetic mutations that develop with age, and the \"wear and tear\" of general life causes 85-90% of breast cancers. There are not many FDA-approved treatments available on the market right now, but those that have extreme toxicity and side effects restrict their use. Consequently, it is essential to use alternative medications to prevent breast cancer. The Grangea maderaspatana plant has a variety of natural chemicals that have been selected for their therapeutic characteristics. These properties include cytotoxicity, antispasmodic, anti-inflammatory, sedative, anti-flatulent, antipyretic, antidiarrheal, antioxidant, estrogenicity, and anti-implantation activity. The whole plant has been used in folk medicine since the classical era to treat an assortment of illnesses. However, using molecular docking, we evaluated the interactions between the natural substances of Grangea maderaspatana and the breast adenocarcinoma receptor (PDB-1M17). Two reference medications, anastrozole and tamoxifen, are utilized to investigate drug similarity and comparability. The compound - (-) Frullanolide has showed aromatase inhibitor (estrogen blocker) efficacy as tamoxifen and anastrozole, which is utilized in the treatment of breast cancer. Given their favorable pharmacokinetics (ADMET) characteristics, the majority of these substances show promise as therapeutic candidates for breast adenocarcinoma. The findings from this research could aid in the development of new and efficient treatment options for breast cancer, potentially improving patient outcomes and standards of living.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"107-117"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In Silico Analysis of Anti-Cancer Activity of Exopolysaccharide Isolated from Novel Pseudolagarobasidium acaciicola through Mass Production, Gel Permeation Separation, and Compositional Analysis.","authors":"Smita Behera, Nibha Gupta","doi":"10.1615/CritRevOncog.2024056496","DOIUrl":"https://doi.org/10.1615/CritRevOncog.2024056496","url":null,"abstract":"<p><p>Bacteria, fungi, and algae are examples of microorganisms that synthesize polysaccharides, which are macromolecules that belong to the carbohydrate class. Production of polysaccharides represents an alternative to chemical and plant-derived compounds that could be used for human well-being which requires implementation of different methods standardized during the extraction and purification process. In the current investigation, Pseudolagarobasidium acaciicola, a novel fungal source of exopolysaccharide (EPS) was used which produced 2773.23 ± 100.39 mg/L when cultured under pre-optimized composed medium for 7 days under submerged culture conditions. Biochemical estimation of crude polysaccharides revealed the presence of carbohydrates, protein, reducing sugar, least phenolics and no flavonoids. Partially purified EPS (ppEPS) was subjected to monosaccharide analysis, molecular weight determination and structural confirmation using FTIR and LCMS analysis. The presence of maltose, fructose, xylose, galactose, glucose, raffinose and sorbose was evident in the ppEPS using HPTLC at 285 nm, with molecular weight of dextran 70 (tentative). Characterization revealed the presence of functional groups including -OH, -COO, C-O-C and C-O with compounds like cellulose, phosphate and 3'-Sialyl-N-acetyllactosamine with glycan as the main structural form. Hence, our hypothesis is: the fungal strain may be used as a novel source of glycan and explore more possibilities for enhanced recovery of EPS important for further drug discovery and formulation programs. Based on existing research on the anti-cancerous characteristics of β-Glycans, an in silico study was carried out, which suggested that β-Glycans may operate more potent against its receptor CLEC7A than the oral chemotherapy drug imatinib.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"119-135"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coralyne Targets the Catalytic Domain of MMP9: An In Silico and In Vitro Investigation.","authors":"Rahul Kumar Vempati, Rama Rao Malla","doi":"10.1615/CritRevOncog.2024056393","DOIUrl":"https://doi.org/10.1615/CritRevOncog.2024056393","url":null,"abstract":"<p><p>Coralyne (COR) is a protoberberine-like isoquinoline alkaloid, and it is known for double-stranded (ds) DNA intercalation and topoisomerase inhibition. It can also sensitize cancer cells through various mechanisms. COR reduces the proliferation and migration of breast cancer cells by inhibiting the expression and activity of matrix metalloproteinase 9 (MMP9). However, the mechanism involved in the inhibitory activity of COR on MMP9 is not known. In the present study, in silico docking studies showed that COR binds to the active site of MMP9 catalytic domain (MMP9-CD) with considerable affinity. The binding affinity of COR to the MMP9-CD, estimated by three different web servers: CB Dock, Seam Dock, and PyRx, was found to be either -7.4 or -7.5 kcal/mol. Another web server that is routinely used for docking studies, Docking Server, has predicted a binding affinity of -5.9 kcal/mol. All four docking servers predicted the same binding site for COR within the MMP9-CD. Corroborating our docking results, molecular dynamic simulation studies have also shown that COR interacts with the same key active site amino acid residues of the MMP9-CD that are essential for its proteolytic function. Molecular mechanics with generalized born and surface area (MMGBSA) calculations using Schrodinger's prime module have shown that the binding free energy with which COR binds to MMP9 is -50 kcal/mol. It inhibited activity of recombinant human MMP9 activity and induced significant cytotoxicity and reduced the proliferation of MDA-MB 468 cells. Overall, our in silico and in vitro experiments show that COR potentially inhibits the activity of MMP9 by directly binding to the active site of its catalytic domain and possibly inhibits proliferation of MDA-MB 468 cells.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"71-89"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of Benzimidazole Derivatives in Molecular Targets for Breast Cancer Treatment: A Comprehensive Review.","authors":"Pratima Katiyar, Kalpana, Aditi Srivastava, Chandra Mohan Singh","doi":"10.1615/CritRevOncog.2024056541","DOIUrl":"https://doi.org/10.1615/CritRevOncog.2024056541","url":null,"abstract":"<p><p>This article provides a basic summary of computational research on benzimidazole and its molecular targets in breast cancer (BC) drug discovery. The drug development process is streamlined, expenses are decreased, and the possibility of finding successful therapies for this difficult illness is increased with the use of computational tools. The utilization of benzimidazole derivatives in medication research and discovery is discussed, along with the results of benzimidazole derivative-related clinical trials conducted against blood cancer during the previous five years. Additionally, it includes analysis of changes in structure and how they affect pharmacology. The structure-based method and other computational tools used in drug development are also covered, as well as the importance of structural information such as stereochemistry, physiological action, and the use of spectroscopic methods like NMR and X-ray crystallography in understanding the interactions between bioactive compounds and receptors. The article highlights the potential of benzimidazoles as bioactive heterocyclic molecules with various biological activities, including antimicrobial and anti-cancer properties.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"43-58"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}