{"title":"MANIFESTATIONS OF TWO BRANCHES OF SOLAR ACTIVITY IN THE HELIOSPHERE AND GCR INTENSITY","authors":"M. Krainev","doi":"10.12737/szf-54201902","DOIUrl":"https://doi.org/10.12737/szf-54201902","url":null,"abstract":"This paper provides insight into heliospheric processes and galactic cosmic ray (GCR) modulation occurring due to the presence of two branches of solar activity in this solar layer. According to the topology of solar magnetic fields, these branches are called toroidal (active regions, sunspots, flares, coronal mass ejections, etc.) and poloidal (high-latitude magnetic fields, polar coronal holes, zonal unipolar magnetic regions, etc.). The main cause of different manifestations of the two branches on the solar surface and in the heliosphere — the layer at the base of the heliosphere in which the main energetic factor is the magnetic field — is formulated. In this case, the magnetic fields of the poloidal branch, which have a larger scale but a lower intensity, gain an advantage in penetrating into the heliosphere. A connection is shown between the poloidal branch and the heliospheric characteristics (solar wind velocity field, size of the heliosphere, form of the heliospheric current sheet, regular heliospheric magnetic field and its fluctuations) that, according to modern notions, determine GCR propagation in the heliosphere.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133460078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MID-LATITUDE AURORA IN SOLAR CYCLES 23–24 FROM OBSERVATIONS IN THE SOUTH OF EASTERN SIBERIA","authors":"A. Mikhalev","doi":"10.12737/szf-54201909","DOIUrl":"https://doi.org/10.12737/szf-54201909","url":null,"abstract":"The paper presents observations of mid-latitude aurora (MA) in the south of Eastern Siberia in solar cycles 23–24. Spectral composition and dominant emissions of MA, daily distribution of MA detection probability, dependence on the level of geomagnetic activity, and classification according to types of aurora are discussed. A close relationship is shown between the intensity of dominant emission at 630.0 nm and the Dst index during magnetic storms (MSs). It is pointed out that the most intense MA are recorded during MS main phases. The MA detected on November 20, 2003 can enlarge the list of great aurora. For the severe MSs (Dstmin< –200 nT) of March 24, 1991, April 6, 2000, October 30 and November 20, 2003, March 17, 2015, the observed dynamics of 557.7 and 630.0 nm auroral emissions is presented. Mechanisms of emission excitation during geomagnetic storms and a possible connection with magnetospheric structures are discussed.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121414623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Martines-Bedenko, V. Pilipenko, V. I. Zakharov, V. Grushin
{"title":"INFLUENCE OF THE VONGFONG 2014 HURRICANE ON THE IONOSPHERE AND GEOMAGNETIC FIELD AS DETECTED BY SWARM SATELLITES: 2. GEOMAGNETIC DISTURBANCES","authors":"V. Martines-Bedenko, V. Pilipenko, V. I. Zakharov, V. Grushin","doi":"10.12737/stp-54201910","DOIUrl":"https://doi.org/10.12737/stp-54201910","url":null,"abstract":"Strong meteorological disturbances in the atmosphere, accompanied by the generation of waves and turbulence, can affect ionospheric plasma and geomagnetic field. To search for these effects, we have analyzed electromagnetic measurement data from low-orbit Swarm satellites during flights over the typhoon Vongfong 2014. We have found that there are “magnetic ripples” in the upper ionosphere that are transverse to the main geomagnetic field fluctuations of small amplitude (0.5–1.5 nT) with a predominant period of about 10 s caused by small-scale longitudinal currents. Presumably, these quasiperiodic fluctuations are produced by the satellite’s passage through the quasiperiodic ionospheric structure with a characteristic scale of ~70 km induced by the interaction of acoustic waves excited by the typhoon with the E-layer of the ionosphere. In one of the flights over the typhoon, a burst of high-frequency noise (~0.3 Hz) was observed, which can be associated with the excitation of the ionospheric Alfven resonator by atmospheric turbulence.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123840228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"OPTICAL OBSERVATIONS OF SMALL SPACECRAFT AND SPACE DEBRIS AT ISTP SB RAS SAYAN OBSERVATORY","authors":"Ivan Korobcev, M. Mishina","doi":"10.12737/szf-54201913","DOIUrl":"https://doi.org/10.12737/szf-54201913","url":null,"abstract":"Launch of several thousands of small spacecraft as part of satellite groups of various companies (OneWeb, SpaceX, etc.) is expected in the coming years. They will significantly increase the “population” in the low-orbit region. The spacecraft are designed mainly to provide telecommunications and remote sensing of Earth from space. They have a short lifetime. The use of high-speed sCMOS (scientific complementary metal-oxide-semiconductor) detectors in combination with medium diameter optical telescopes provides high temporal resolution, which allows us to get detailed brightness light curves and to estimate the state of small spacecraft. We present the technique and results of photometric measurements of small spacecraft obtained with the 1.6-meter AZT-33IK telescope of ISTP SB RAS Sayan Solar Observatory. Photometric measurements are shown to be an important source of information at various operational stages of satellites.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115998303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Parhomov, V. Eselevich, M. Eselevich, A. Dmitriev, T. Vedernikova
{"title":"DIAMAGNETIC PLASMOIDS AS PART OF DIAMAGNETIC STRUCTURES OF THE SLOW SOLAR WIND AND THEIR IMPACT ON EARTH’S MAGNETOSPHERE","authors":"V. Parhomov, V. Eselevich, M. Eselevich, A. Dmitriev, T. Vedernikova","doi":"10.12737/szf-54201905","DOIUrl":"https://doi.org/10.12737/szf-54201905","url":null,"abstract":"We have shown that diamagnetic structures (DSs), which form the basis of the slow quasi-stationary solar wind (SW), are observed in Earth’s orbit as a sequence of DSs of various scales. The analysis of this phenomenon indicates that diamagnetic plasmoids in SW, whose concept was introduced by Karlsson in 2015, are identical to small-scale DSs. We have found that the impact of a sequence of DSs in the slow SW on Earth’s magnetosphere causes an increase in geomagnetic activity. Isolated DSs generate short-term magnetic disturbances whose duration is approximately equal to the DS duration. Hence, a sequence of DSs can cause sawtooth substorms. We emphasize that the interaction of DS in the slow SW under northward interplanetary magnetic field can be associated with penetration of DS high-density plasma into the magnetosphere.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"99 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127091806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Анна Луковникова, A. Lukovnikova, Виктор Алешков, V. Aleshkov, Алексей Лысак, A. Lysak
{"title":"Observing the neutron component during thunderstorm activity at a mountain CR station","authors":"Анна Луковникова, A. Lukovnikova, Виктор Алешков, V. Aleshkov, Алексей Лысак, A. Lysak","doi":"10.12737/szf-53201906","DOIUrl":"https://doi.org/10.12737/szf-53201906","url":null,"abstract":"During three summer months in 2015, the Cosmic Ray (CR) station Irkutsk-3000, located at 3000 m above sea level, measured the CR neutron component intensity with the 6NM64 neutron monitor, as well as the atmospheric electric field strength and the level of electromagnetic interference during lightning discharges. It is shown that the level of electromagnetic interference, when registered during lightning discharges, depends considerably on the fixed level of signal discrimination. During observations, we observed no effects of thunderstorm discharges at the neutron monitor count rate at the CR station Irkutsk-3000.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"271 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116420641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Геннадий Минасянц, G. Minasyants, Тамара Минасянц, T. Minasyants, Владимир Томозов, V. Tomozov
{"title":"Features of development of sustained fluxes of high-energy gamma-ray emission at different stages of solar flares","authors":"Геннадий Минасянц, G. Minasyants, Тамара Минасянц, T. Minasyants, Владимир Томозов, V. Tomozov","doi":"10.12737/stp-53201902","DOIUrl":"https://doi.org/10.12737/stp-53201902","url":null,"abstract":"We have studied properties of sustained gamma fluxes having quantum energies of >100 MeV at different stages of flares with 1-min temporal resolution (Fermi/LAT). \u0000The most probable process of emergence of high-energy gamma-quanta during the impulsive phase of flares (6 events) has been confirmed. Acceleration of particles, produced by flare energy release (at dissipation of current sheet), occurs when they interact with a shock front of a coronal mass ejection (CME), which develops in the same active region at the same time. Nuclear interactions of accelerated protons (>500 MeV) with plasma ions lead further to the emergence of high-energy gamma-quanta. We have established that the interaction between a flare flux and a high-speed CME during the flare impulsive phase occurs within fairly limited periods — from 2 to 16 min. In the events considered, we have found a direct connection between maximum gamma flux F max (γ > 100 MeV) and CME velocity. \u0000High maximum values of gamma fluxes are typical of the flare impulsive phase: 3.5·10⁻⁴ cm⁻²s⁻¹ ≤ F max (γ > 100 MeV) ≤ 1.3·10⁻² cm⁻² s⁻¹. At the same time, the value F max (γ > 100 MeV) = 0.013 cm⁻²s⁻¹ was the highest for the events observed by Fermi/LAT from 2008 to 2017. \u0000During the development of CMEs moving with a supersonic speed, shock waves are formed which are the major power source of accelerated particles during the main phase of gradual flares. In some cases, however, the impact of shock waves on particle acceleration is the greatest in the short impulsive phase. \u0000To reveal parameters most effectively influencing the generation of high-energy gamma-ray emission, we have compared 17 flare events. The most significant parameter proved to be the time interval of joint action of flare process and CME shocks. \u0000We have established that during simultaneous development of flare process and CME attendant on the flare, the most efficient particle acceleration occurs which gives rise to maximum fluxes of high-energy gamma-quanta.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124295402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heuristic model of solar X-ray spectrum according to satellite data for geophysical applications","authors":"Юлия Корсунская, Yulia Korsunskaja","doi":"10.12737/stp-53201909","DOIUrl":"https://doi.org/10.12737/stp-53201909","url":null,"abstract":"Model and computational algorithm for recovering the X-ray component of the solar spectrum based on GOES XL (0.1–0.8 nm), XS (0.05–0.4 nm or 0.05–0.3 nm) and SDO QD (0.1–7 nm) channels data are presented. The model based the Mewe approximation of emission from optically thin plasmas that presents a temperature-like spectrum. The possibility to present the result spectrum as a superposition of Mewe spectrums placed in the solar absorbing atmosphere at one optical depth for its temperature parameter energy is suggested in this paper. So the model is a variation of the multi-temperature approximation. Spectrum parameters are determined on the basis of support functions, approximation expressions for which are given in appendix.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130166005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Владислав Григорьев, Vladislav Grigoryev, С.А. Стародубцев, S. Starodubtsev, П. Ю. Гололобов, P. Gololobov
{"title":"Monitoring of geomagnetic disturbances using the global survey method in real time","authors":"Владислав Григорьев, Vladislav Grigoryev, С.А. Стародубцев, S. Starodubtsev, П. Ю. Гололобов, P. Gololobov","doi":"10.12737/szf-53201911","DOIUrl":"https://doi.org/10.12737/szf-53201911","url":null,"abstract":"A method for forecasting geomagnetic storms using the realization of the global survey method in real time is presented. The method is based on data from the worldwide network of neutron monitors NMDB. Using this method, we analyze the behavior of components of three-dimensional angular distribution of cosmic rays in the interplanetary medium, which were due to the first two spherical harmonics, over the period from 2013 to 2018. We have established that the main parameters that respond to the arrival of geoeffective disturbances of the interplanetary medium at Earth are changes in amplitudes of zonal (north-south) components of cosmic ray distribution. In order to select effective criteria for identifying predictors of geomagnetic disturbances and their possible temporal variations, we have made a retrospective analysis of the relationship between behaviors of the above components and geomagnetic disturbances occurring during the period of interest.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131205372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Анатолий Гульельми, A. Guglielmi, Александр Потапов, A. Potapov
{"title":"Problems of the Pc1 magnetospheric wave theory. A review","authors":"Анатолий Гульельми, A. Guglielmi, Александр Потапов, A. Potapov","doi":"10.12737/stp-53201910","DOIUrl":"https://doi.org/10.12737/stp-53201910","url":null,"abstract":"The Pc1 ultralow-frequency electromagnetic waves (frequency range 0.2–5 Hz), also known as pearl necklace, are a unique phenomenon in near-Earth space physics. Many properties of pearls remain a mystery, despite the research of prominent cosmophysicists for more than half a century. In the proposed review, we briefly outline the main points of the so-called standard model, which is widely used to interpret Pc1. Next, we focus on the criticism of the standard model and on the identification of open problems in the Pc1 theory. The general conclusion is that it is necessary to develop new ideas outside the framework of the standard model in order to understand the processes of excitation and propagation of Pc1 waves in Earth’s magnetosphere.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125604147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}