太阳活动的两个分支在日球层的表现和GCR强度

M. Krainev
{"title":"太阳活动的两个分支在日球层的表现和GCR强度","authors":"M. Krainev","doi":"10.12737/szf-54201902","DOIUrl":null,"url":null,"abstract":"This paper provides insight into heliospheric processes and galactic cosmic ray (GCR) modulation occurring due to the presence of two branches of solar activity in this solar layer. According to the topology of solar magnetic fields, these branches are called toroidal (active regions, sunspots, flares, coronal mass ejections, etc.) and poloidal (high-latitude magnetic fields, polar coronal holes, zonal unipolar magnetic regions, etc.). The main cause of different manifestations of the two branches on the solar surface and in the heliosphere — the layer at the base of the heliosphere in which the main energetic factor is the magnetic field — is formulated. In this case, the magnetic fields of the poloidal branch, which have a larger scale but a lower intensity, gain an advantage in penetrating into the heliosphere. A connection is shown between the poloidal branch and the heliospheric characteristics (solar wind velocity field, size of the heliosphere, form of the heliospheric current sheet, regular heliospheric magnetic field and its fluctuations) that, according to modern notions, determine GCR propagation in the heliosphere.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MANIFESTATIONS OF TWO BRANCHES OF SOLAR ACTIVITY IN THE HELIOSPHERE AND GCR INTENSITY\",\"authors\":\"M. Krainev\",\"doi\":\"10.12737/szf-54201902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides insight into heliospheric processes and galactic cosmic ray (GCR) modulation occurring due to the presence of two branches of solar activity in this solar layer. According to the topology of solar magnetic fields, these branches are called toroidal (active regions, sunspots, flares, coronal mass ejections, etc.) and poloidal (high-latitude magnetic fields, polar coronal holes, zonal unipolar magnetic regions, etc.). The main cause of different manifestations of the two branches on the solar surface and in the heliosphere — the layer at the base of the heliosphere in which the main energetic factor is the magnetic field — is formulated. In this case, the magnetic fields of the poloidal branch, which have a larger scale but a lower intensity, gain an advantage in penetrating into the heliosphere. A connection is shown between the poloidal branch and the heliospheric characteristics (solar wind velocity field, size of the heliosphere, form of the heliospheric current sheet, regular heliospheric magnetic field and its fluctuations) that, according to modern notions, determine GCR propagation in the heliosphere.\",\"PeriodicalId\":351867,\"journal\":{\"name\":\"Solnechno-Zemnaya Fizika\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solnechno-Zemnaya Fizika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12737/szf-54201902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solnechno-Zemnaya Fizika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12737/szf-54201902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提供了对日球层过程和银河宇宙射线(GCR)调制的深入了解,这是由于太阳活动的两个分支在这一太阳层的存在。根据太阳磁场的拓扑结构,这些分支被称为环向(活动区、太阳黑子、耀斑、日冕物质抛射等)和极向(高纬度磁场、极地日冕洞、纬向单极磁区等)。这两个分支在太阳表面和日球层(日球层底部的一层,主要能量因素是磁场)中不同表现的主要原因被阐述了出来。在这种情况下,具有较大规模但强度较低的极向分支的磁场在穿透日球层时获得优势。根据现代观念,极向分支与决定GCR在日球层传播的日球层特性(太阳风速度场、日球层的大小、日球层电流片的形式、规则的日球磁场及其波动)之间存在联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MANIFESTATIONS OF TWO BRANCHES OF SOLAR ACTIVITY IN THE HELIOSPHERE AND GCR INTENSITY
This paper provides insight into heliospheric processes and galactic cosmic ray (GCR) modulation occurring due to the presence of two branches of solar activity in this solar layer. According to the topology of solar magnetic fields, these branches are called toroidal (active regions, sunspots, flares, coronal mass ejections, etc.) and poloidal (high-latitude magnetic fields, polar coronal holes, zonal unipolar magnetic regions, etc.). The main cause of different manifestations of the two branches on the solar surface and in the heliosphere — the layer at the base of the heliosphere in which the main energetic factor is the magnetic field — is formulated. In this case, the magnetic fields of the poloidal branch, which have a larger scale but a lower intensity, gain an advantage in penetrating into the heliosphere. A connection is shown between the poloidal branch and the heliospheric characteristics (solar wind velocity field, size of the heliosphere, form of the heliospheric current sheet, regular heliospheric magnetic field and its fluctuations) that, according to modern notions, determine GCR propagation in the heliosphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信